Electronic Supplementary Information

Construction of 1-Pyrroline Skeletons by Lewis Acid-Mediated Conjugate Addition of Vinyl Azides

Xu Zhu and Shunsuke Chiba*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Table of Contents

1. General S2
2. The safety issues for handling of azido compounds S2
3. Synthesis of 3-alkyldene-2-oxindoles 1 S3
4. Synthesis of vinyl azides 2 S5
5. BF$_3$•OEt$_2$-mediated/TiCl$_4$-catalyzed reactions of vinyl azides 2 with 3-alkyldene-2-oxindoles 1 (Schemes 2 and 3) S6
6. TiCl$_4$-catalyzed reactions of vinyl azides 2 with 2-alkyldenemalonates 4 (Schemes 4 and 5) S19
7. Elucidation of the reaction mechanisms S26
8. Further transformation of products 3aa, 3ea, and 5aa (Scheme 7) S32
9. References S36
Appendix: 1H and 13C NMR spectra for new compounds S37
1. General

1H NMR (400 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl$_3$ [using CDCl$_3$ (for 1H, $\delta = 7.26$) as the internal standard]. 13C NMR (100 MHz) spectra on a Bruker Avance 400 spectrometer in CDCl$_3$ [using CDCl$_3$ (for 13C, $\delta = 77.0$) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dddd = doublet of doublet of doublet of doublet, dt = doublet of triplet, sep = septet, m = multiplet, s br = singlet broadening. Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus. IR spectra were recorded on a Shimazu IR Prestige-21 FT-IR Spectrometer. High-resolution mass spectra were obtained with a Q-Tof Premier LC HR mass spectrometer. X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractiometer. Flash column chromatography was performed using Merck silica gel 60 with distilled solvents. Anhydrous solvents were used in all cases. TiCl$_4$ (1.0 M in CH$_2$Cl$_2$) and BF$_3$OEt$_2$ were purchased from Sigma-Aldrich Co., Inc.

2. The safety issues for handling of azido compounds1,2

2.1. Sodium azide (NaN$_3$): Caution: Sodium azide can be absorbed through skin and is toxic (LD$_{50}$ oral = 27 mg/kg for rats). Wearing gloves are required when handling it. Sodium azide decomposes explosively upon heating to above 275 °C. It is relatively safe especially in aqueous solution, unless acidified to form HN$_3$, which is volatile and highly toxic.

2.2. Organic azides: Caution: Organic azides are potentially explosive substances that can decompose with the slight input of energy from external sources (heat, light, pressure, etc). When designing the organic azides used for the project, please keep in mind the following equation.

$$\frac{N_C + N_O}{N_N} \geq 3 \quad (N: \text{number of the atom})$$

It should be noted that this equation takes into account all nitrogen atoms in the organic azide molecule, not just those in the azido group. All organic azides prepared in this work are enough
stable to be stored under –20 ºC at least for half a year. We have never experienced a safety problem with these compounds.

3. Synthesis of 3-alkylidene-2-oxindoles 1

Typical procedure for synthesis of 1a:

To a solution of isatin A (5.0 mmol, 1.19 g) in THF (5.0 mL) was added methyl 2-(triphenyl-λ^5-phosphanylidene)acetate (B) (5.00 mmol, 1.67 g) slowly at 0 ºC. The reaction mixture was stirred for 15 min at the same temperature before evaporation to remove the solvent. The crude material obtained was filtered through celite with ether as eluent. The filtrate was concentrated and purified by flash column chromatography (silica gel; ethyl acetate: hexane = 20:80) to give ethyl (E)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetate\(^3\) (1a) (1.39 g, 4.75 mmol, 95% yield) as a yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.37 (3H, t, \(J = 7.2\) Hz), 4.33 (2H, q, \(J = 7.2\) Hz), 4.92 (2H, s), 6.68 (1H, d, \(J = 8.0\) Hz), 6.97 (1H, s), 6.99-7.04 (1H, m), 7.22-7.32 (6H, m), 8.56 (1H, d, \(J = 7.2\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.6, 165.6, 145.0, 137.6, 135.4, 132.3, 128.8, 127.7, 127.2, 122.8, 122.7, 119.9, 109.1, 61.2, 43.8, 14.1.

3-Alkylidene-2-oxindoles 1b, 1c, 1f, 1g, and 1h\(^8\) were known compounds and prepared as E-isomers by following the above procedure from the corresponding isatins and the Wittig reagents. 3-Alkylidene-2-oxindole 1e\(^6\) was prepared according to the reported literature.
2-(1-Benzyl-2-oxoindolin-3-ylidene)acetonitrile (1d) was obtained as a mixture of the E- and Z-isomers by following the typical procedure using 2-(triphenyl-\(\lambda^5\)-phosphanylidene)acetonitrile.

\((E)\)-2-(1-Benzyl-2-oxoindolin-3-ylidene)acetonitrile \((E\text{-}1d)\):

![E-1d structure]

75% yield as a wine red solid, mp 158-160 °C; IR (NaCl) 3028, 2976, 2866, 2212, 1713, 1606, 1467, 1383, 1352, 1188, 1126, 1078 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.91 (2H, s), 6.38 (1H, s), 6.73 (1H, d, \(J = 7.6\) Hz), 7.08 (1H, dd, \(J = 7.6, 7.6\) Hz), 7.25-7.35 (6H, m), 8.07 (1H, d, \(J = 7.6\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.4, 144.8, 143.3, 134.9, 133.6, 128.9, 128.0, 127.3, 125.0, 123.3, 119.3, 116.1, 109.8, 97.7, 43.9. ESIHRMS: Found: \(m/z\) 261.1025. Calcd for C\(_{17}\)H\(_{13}\)N\(_2\)O: \((M+H)^+\) 261.1028.

\((Z)\)-2-(1-Benzyl-2-oxoindolin-3-ylidene)acetonitrile \((Z\text{-}1d)\):

![Z-1d structure]

8% yield as an orange solid, mp 159-161 °C; IR (NaCl) 3415, 2976, 2933, 2864, 2218, 1711, 1612, 1470, 1383, 1350, 1288, 1122, 1078 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.93 (2H, s), 6.15 (1H, s), 6.73 (1H, d, \(J = 7.6\) Hz), 7.02 (1H, dd, \(J = 7.6, 7.6\) Hz), 7.28-7.34 (6H, m), 7.46 (1H, d, \(J = 7.2\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 163.7, 143.9, 143.6, 135.0, 133.7, 128.9, 127.9, 127.5, 122.8, 122.1, 120.1, 114.9, 109.9, 97.2, 43.8. ESIHRMS: Found: \(m/z\) 265.1026. Calcd for C\(_{17}\)H\(_{13}\)N\(_2\)O: \((M+H)^+\) 261.1028.
4. Synthesis of vinyl azides 2

Typical procedure for synthesis of 2a:

This procedure was slightly modified from the Hassner’s method.\(^7\)

To a stirred suspension of NaN\(_3\) (7.15 g, 110 mmol) in acetonitrile (30 mL) was added dropwise a solution of iodine monochloride (8.07 g, 49.7 mmol in 60 mL CH\(_2\)Cl\(_2\)) at \(-20^\circ\text{C}\), and the mixture was stirred at the same temperature for 30 min. A solution of styrene (5.0 mL, 43.6 mmol) in CH\(_2\)Cl\(_2\) (20 mL) was added slowly, and the mixture was kept stirring for 1 h. The reaction was quenched with saturated aqueous Na\(_2\)S\(_2\)O\(_3\), and the reaction mixture was extracted twice with Et\(_2\)O. The combined extracts were washed with brine and dried over MgSO\(_4\). After filtration and evaporation of solvents, the resulting crude materials were used immediately for the next step without any further purification.

The crude materials obtained above were dissolved in Et\(_2\)O (100 mL) and \(\text{t-BuOK}\) (5.92 g, 52.3 mmol) was added portion wise at 0 \(^\circ\text{C}\). The mixture was then stirred for 30 mins at the same temperature before quenching by adding pH 9 aqueous ammonium buffer, and the organic materials were extracted with Et\(_2\)O. The Et\(_2\)O solution was washed with brine and dried over MgSO\(_4\). After filtration, the solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; 100% hexane) to give vinyl azide 2a (5.38 g, 37.1 mmol, 85% yield from styrene) as a pale yellow liquid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.98 (1H, d, \(J = 2.4\) Hz), 5.45 (1H, d, \(J = 2.4\) Hz), 7.37-7.40 (3H, m), 7.57-7.59 (2H, m); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 145.1, 134.3, 129.1, 128.5, 125.6, 98.0.
Vinyl azides $2b^8$, $2c^4$, and $2d-2h^9$ were known compounds and prepared according to the reported procedures.

5. $\text{BF}_3\cdot\text{OEt}_2$-mediated/TiCl$_4$-catalyzed reactions of vinyl azides 2 with 3-alkylidene-2-oxindoles 1 (Schemes 2 and 3)

5.1 Optimization of the reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>reagent (x)</th>
<th>y</th>
<th>solvent</th>
<th>temp.</th>
<th>time</th>
<th>yieldb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti$_2$NH (10)</td>
<td>1.0</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>40 °C</td>
<td>3 days</td>
<td>38% (36%)</td>
</tr>
<tr>
<td>2</td>
<td>In(OTf)$_3$ (20)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt</td>
<td>19 h</td>
<td>0 (rsm: 91%d)/(44%e)</td>
</tr>
<tr>
<td>3</td>
<td>Cu(MeCN)$_2$BF$_4$ (20)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt</td>
<td>68 h</td>
<td>12% (rsm: 74%d)/(60%f)</td>
</tr>
<tr>
<td>4</td>
<td>Cu(MeCN)$_2$OTf (20)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt</td>
<td>68 h</td>
<td>17% (rsm: 61%d)/(58%f)</td>
</tr>
<tr>
<td>5</td>
<td>Cu(OTf)$_2$ (20)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt-60 °C</td>
<td>2 h</td>
<td>0 (rsm: 97%d)/(50%f)</td>
</tr>
<tr>
<td>6</td>
<td>$\text{BF}_3\cdot\text{OEt}_2$ (20)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt</td>
<td>25 h</td>
<td>16% (71%c)</td>
</tr>
<tr>
<td>7</td>
<td>$\text{BF}_3\cdot\text{OEt}_2$ (50)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt</td>
<td>6 h</td>
<td>44%</td>
</tr>
<tr>
<td>8</td>
<td>$\text{BF}_3\cdot\text{OEt}_2$ (50)</td>
<td>1.2</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>rt</td>
<td>5 h</td>
<td>57% (rsm: 39%d)</td>
</tr>
<tr>
<td>9</td>
<td>$\text{BF}_3\cdot\text{OEt}_2$ (120)</td>
<td>1.2</td>
<td>ClCH$_2$Cl$_2$</td>
<td>rt</td>
<td>6 h</td>
<td>80%</td>
</tr>
<tr>
<td>10</td>
<td>$\text{BF}_3\cdot\text{OEt}_2$ (200)</td>
<td>1.2</td>
<td>ClCH$_2$Cl$_2$</td>
<td>rt</td>
<td>6 h</td>
<td>95%c</td>
</tr>
<tr>
<td>11</td>
<td>TiCl$_4$ (20)</td>
<td>1.2</td>
<td>ClCH$_2$Cl$_2$</td>
<td>rt</td>
<td>2 h</td>
<td>94%c</td>
</tr>
<tr>
<td>12</td>
<td>TiCl$_4$ (10)</td>
<td>1.2</td>
<td>ClCH$_2$Cl$_2$</td>
<td>rt</td>
<td>4 h</td>
<td>92%c</td>
</tr>
<tr>
<td>13</td>
<td>TiCl$_4$ (5)</td>
<td>1.2</td>
<td>ClCH$_2$Cl$_2$</td>
<td>rt</td>
<td>13 h</td>
<td>71% (rsm: 18%d)</td>
</tr>
</tbody>
</table>

a All the reactions were conducted in 0.30 mmol scale. b Crude 1H NMR yield. c Isolated yield. d Crude 1H NMR yield of recovery of 1a. e Crude yield of N-phenylacetamide. f Crude 1H NMR yield of recovery of vinyl azide 2a.
5.2. Typical procedure: synthesis of 3aa

To a solution of alkylideneoxindole 1a (0.30 mmol, 92.1 mg) and vinyl azide 2a (0.36 mmol, 52.3 mg) in CH₂Cl₂ (3.0 mL) was added BF₃•OEt₂ (0.60 mmol, 74.0 µL, conditions A) or TiCl₄ (1.0 M in CH₂Cl₂, 0.030 mmol, 30.0 µL, conditions B) dropwise at 0 °C. The reaction was stirred at room temperature until 1a was consumed before quenching with saturated aqueous NaHCO₃. The mixture was extracted trice with CH₂Cl₂ and the organic layers were combined and washed with brine. The solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; ethylacetate:hexane = 20:80) to give ethyl (3R*,3'S*)-1-benzyl-2-oxo-5'-phenyl-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3aa) in conditions A: 6 h, 95% yield as a single diastereomer and in conditions B: 4 h, 92% yield as a single diastereomer.

Pale yellow crystal (CCDC 1436809); mp 188-190 °C; IR (NaCl) 3053, 2986, 1724, 1635, 1612, 1576, 1487, 1369, 1265, 1199, 1177 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.47 (3H, t, J = 7.2 Hz), 3.55 (1H, dd, J = 17.2, 9.6 Hz), 3.64 (1H, dq, J = 10.8, 7.2 Hz), 3.76 (1H, dq, J = 10.8, 7.2 Hz), 3.92 (1H, dd, J = 17.2, 9.6 Hz), 4.05 (1H, dd, J = 9.6, 9.6 Hz), 4.72 (1H, d, J = 15.6 Hz), 5.32 (1H, d, J = 15.6 Hz), 6.73 (1H, d, J = 8.0 Hz), 6.90-6.97 (2H, m), 7.16 (1H, dd, J = 7.6, 7.6 Hz), 7.29 (1H, d, J = 7.2 Hz), 7.34 (2H, dd, J = 8.0, 7.2 Hz), 7.41-7.45 (4H, m), 7.47-7.51 (1H, m), 7.92 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 175.9, 170.5, 142.9, 135.6, 133.2, 131.5, 129.6, 128.6, 128.5, 128.3, 127.8, 127.7, 127.4, 124.4, 122.8, 109.3, 82.9, 60.8, 49.8, 44.2, 38.5, 13.2. ESIHRMS: Found: m/z 425.1863. Calcd for C₂₇H₂₅N₂O₃: (M+H)⁺ 425.1865.

S7
Ethyl (3R*,3'S*)-2-oxo-5'-phenyl-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3ba):

In conditions A: 1 h, 95% yield as a single diastereomer

In conditions B: 5 h, 95% yield as an inseparable mixture of two diastereomers with dr = 6:1

Yellow solid, mp 208-210 °C; IR (NaCl) 3426, 3053, 2928, 1732, 1645, 1620, 1472, 1344, 1265, 1199 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.73 (3H, t, J = 7.2 Hz), 3.54 (1H, dd, J = 17.2, 9.6 Hz), 3.78 (2H, q, J = 7.2 Hz), 3.89 (1H, dd, J = 17.2, 8.8 Hz), 3.98 (1H, dd, J = 9.6, 8.8 Hz), 6.92-6.97 (3H, m), 7.19-7.23 (1H, m), 7.41-7.51 (3H, m), 7.92 (2H, d, J = 7.2 Hz), 9.19 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 176.0, 170.5, 141.1, 133.1, 131.5, 129.7, 128.5, 128.2, 128.1, 124.6, 122.7, 110.2, 83.4, 60.9, 49.7, 38.4, 13.4. ESIHRMS: Found: m/z 335.1396. Calcld for C₂₀H₁₉N₂O₃: (M+H)⁺ 335.1396.

(3R*,3'S*)-3'-Benzoyl-1-benzyl-5'-phenyl-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-2-one (3ca):

In conditions A: 5 h, 95% yield as a single diastereomer.

In conditions B: 2 h, 77% yield as a single diastereomer.
Pale yellow crystal (CCDC 1436810), mp 218-220 °C; IR (NaCl) 3421, 3053, 2986, 1716, 1682, 1611, 1487, 1346, 1265, 1182 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.56 (1H, dd, \(J = 17.2, 9.2\) Hz), 4.31 (1H, dd, \(J = 17.2, 8.4\) Hz), 4.56 (1H, d, \(J = 16.0\) Hz), 4.88 (1H, d, \(J = 16.0\) Hz), 4.95 (1H, dd, \(J = 9.2, 8.4\) Hz), 6.35 (1H, d, \(J = 7.6\) Hz), 6.83-6.9 (2H, m), 6.95-6.99 (1H, m), 7.14-7.18 (4H, m), 7.25-7.29 (3H, m), 7.37-7.51 (6H, m), 7.97 (2H, d, \(J = 8.4\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 197.2, 176.8, 176.3, 142.2, 136.9, 135.2, 133.3, 132.8, 131.4, 129.3, 128.7, 128.5, 128.3 (overlapped), 128.2, 127.8, 127.5, 127.0, 125.8, 122.9, 109.0, 83.3, 52.1, 44.3, 38.3. ESIHRMS: Found: \(m/z\) 457.1915. Calcd for C\(_{31}\)H\(_{25}\)N\(_2\)O\(_2\): (M+H)\(^+\) 457.1916.

\((3R^*,3'S^*)\)-1-Benzyl-2-oxo-5'-phenyl-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carbonitrile (3da):

In conditions A: 24 h, 79% yield as a single diastereomer;
In conditions B: 24 h, 79% yield as a single diastereomer;
In these conditions, 2 equiv of vinyl azide 2a was used.

Pale yellow crystal (CCDC 1436811), mp 214-216 °C; IR (NaCl) 3429, 3053, 2986, 2305, 1722, 1635, 1614, 1487, 1369, 1265, 1180 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.71 (1H, ddd, \(J = 14.8, 10.8, 4.0\) Hz), 3.87-3.97 (2H, m), 4.94 (1H, d, \(J = 16.0\) Hz), 5.00 (1H, d, \(J = 16.0\) Hz), 6.81 (1H, d, \(J = 8.0\) Hz), 7.10 (1H, d, \(J = 7.6, 7.6\) Hz), 7.24-7.35 (7H, m), 7.44 (2H, dd, \(J = 7.6, 7.2\) Hz), 7.51 (1H, dd, \(J = 7.2, 7.2\) Hz), 7.88 (2H, d, \(J = 7.2\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 174.9, 174.5, 142.7, 134.9, 132.2, 132.0, 130.6, 128.9, 128.7, 128.3, 127.8, 127.1, 126.5, 125.4, 123.5, 118.3,
110.0, 82.4, 44.3, 41.9, 34.6. ESIHRMS: Found: m/z 378.1609. Calcd for C_{25}H_{20}N_{3}O: (M+H)^+ 378.1606.

(R*)-5'-Phenyl-3',4'-dihydrospiro[indoline-3,2'-pyrrol]-2-one (3ea):

![Chemical Structure](image)

In conditions A: 3 h, 44% yield;
In conditions B: 3 h, 22% yield.

Yellow solid, mp 211-213 °C; IR (NaCl) 3426, 3053, 2986, 1716, 1620, 1470, 1422, 1265, 1203 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.30 (1H, ddd, J = 13.2, 9.6, 7.2 Hz), 2.65 (1H, ddd, J = 13.2, 9.6, 4.2 Hz), 3.36 (1H, ddd, J = 16.8, 9.6, 7.2 Hz), 3.48 (1H, ddd, J = 16.8, 9.6, 4.2), 6.91 (1H, d, J = 7.6 Hz), 7.02 (1H, dd, J = 7.6, 7.2 Hz), 7.11 (1H, d, J = 7.2 Hz), 7.20-7.24 (1H, dd, J = 7.6, 7.6 Hz), 7.39-7.49 (3H, m), 7.92 (2H, d, J = 8.0 Hz), 8.57 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 179.5, 177.5, 140.7, 133.7, 132.7, 131.1, 128.4, 128.3 (overlapped), 123.9, 123.0, 110.1, 81.9, 36.7, 32.9. ESIHRMS: Found: m/z 263.1186. Calcd for C_{17}H_{18}N_{3}O: (M+H)^+ 263.1184.

Ethyl

(3R*,3'S*)-1-benzyl-5-methoxy-2-oxo-5'-phenyl-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3fa):

![Chemical Structure](image)

In conditions A: 3 h, 90% yield as a single diastereomer
In conditions B: 6 h, 76% yield as an inseparable mixture of two diastereomers with dr = 7: 1
White solid, mp 195-197 °C; IR (NaCl) 3421, 3053, 2984, 1715, 1609, 1608, 1576, 1495, 1371, 1265, 1202, 1180 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.54 (3H, t, \(J = 7.2\) Hz), 3.55 (1H, dd, \(J = 17.6, 9.6\) Hz), 3.65 (3H, s), 3.69 (1H, dq, \(J = 10.4, 7.2\) Hz), 3.80 (1H, dq, \(J = 10.4, 7.2\) Hz), 3.91 (1H, dd, \(J = 17.6, 9.2\) Hz), 4.05 (1H, dd, \(J = 9.6, 9.2\) Hz), 4.69 (1H, d, \(J = 15.6\) Hz), 5.28 (1H, \(J = 15.6\) Hz), 6.57 (1H, d, \(J = 2.4\) Hz), 6.61 (1H, d, \(J = 8.4\) Hz), 6.69 (1H, dd, \(J = 8.4, 2.4\) Hz), 7.27 (1H, d, \(J = 7.2\) Hz), 7.34 (2H, dd, \(J = 7.6, 6.8\) Hz), 7.40-7.45 (4H, m), 7.47-7.51 (1H, m), 7.92 (2H, d, \(J = 7.2\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.4, 176.0, 170.5, 156.0, 136.3, 135.6, 133.1, 131.5, 129.0, 128.6, 128.5, 128.3, 127.6, 127.4, 114.4, 111.5, 109.8, 83.3, 60.9, 55.8, 49.7, 44.3, 38.6, 13.3. ESIHRMS: Found: m/z 455.1973. Calcld for C\(_{28}\)H\(_{27}\)N\(_2\)O\(_4\): (M+H)\(^+\) 455.1971.

Ethyl (3\(R^*\),3\(S^*\))-1-benzyl-5-chloro-2-oxo-5'-phenyl-3',4'-dihydropyrrolo[2,3'-pyrrole]-3'-carboxylate (3ga):

![Chemical Structure](image)

In conditions A: 3 h, 85% yield as a single diastereomer

In conditions B: 10 min, 91% yield as an inseparable mixture of two diastereomers with dr = 7:1

Pink solid, mp 243-245 °C; IR (NaCl) 3433, 3053, 2986, 1730, 1645, 1609, 1485, 1422, 1265, 1199, 1175 cm\(^{-1}\); 0.57 (3H, t, \(J = 7.2\) Hz), 3.56 (1H, dd, \(J = 17.6, 9.6\) Hz), 3.70 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.83 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.90 (1H, dd, \(J = 17.6, 9.2\) Hz), 4.04 (1H, dd, \(J = 9.6, 9.2\) Hz), 4.70 (1H, d, \(J = 15.6\) Hz), 5.29 (1H, d, \(J = 15.6\) Hz), 6.63 (1H, d, \(J = 8.4\) Hz), 6.95 (1H, d, \(J = 2.0\) Hz), 7.13 (1H, dd, \(J = 8.0, 2.0\) Hz), 7.26-7.52 (8H, m), 7.91 (2H, \(J = 7.2\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.5, 176.3, 170.2, 141.5, 135.1, 132.9, 131.7, 129.6, 129.5, 128.7, 128.6, 128.3, 128.2, 127.8, 127.4, 124.9, 110.3, 82.7, 61.0, 49.7, 44.3, 38.6, 13.3. ESIHRMS: Found: m/z 459.1476. Calcld for C\(_{27}\)H\(_{25}\)ClN\(_2\)O\(_3\): (M+H)\(^+\) 459.1475.
Ethyl
(3R*,3'S*)-1-benzyl-2-oxo-5'-phenyl-7-(trifluoromethyl)-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3ha):

In conditions A: 4 h, 87% yield as a single diastereomer

In conditions B: 4 h, 80% yield, dr = 3:1, two diastereomers were isolated.

White solid, mp 142-145 °C; IR (NaCl) 3420, 3055, 2980, 1734, 1647, 1612, 1454, 1332, 1265, 1165, 1126 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.69 (3H, t, J = 7.2 Hz), 3.56 (1H, dd, J = 17.2, 9.6 Hz), 3.73-3.87 (2H, m), 3.90 (1H, dd, J = 17.2, 8.8 Hz), 4.04 (1H, dd, J = 9.6, 8.8 Hz), 5.21 (1H, d, J = 16.8 Hz), 5.29 (1H, d, J = 16.8 Hz), 7.04 (1H, dd, J = 7.6, 7.6 Hz), 7.16 (1H, d, J = 7.2 Hz), 7.21-7.24 (1H, m), 7.27-7.33 (4H, m), 7.40-7.50 (3H, m), 7.54 (1H, J = 8.0 Hz), 7.91 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 176.5, 170.1, 141.2, 135.9, 132.8, 131.7, 130.8, 128.5, 128.23, 128.21, 128.1, 127.6 (q, J = 3.1 Hz), 126.8, 125.6, 123.1 (q, J = 270.4 Hz), 122.3, 112.9 (q, J = 33.1 Hz), 80.9, 61.0, 50.0, 45.9 (d, J = 4.9 Hz), 38.7, 13.3. ESIHRMS: Found: m/z 4493.1739. Calcd for C₂₉H₂₄F₃N₂O₃: (M+H)⁺ 493.1739.

Minor isomer isolated from the conditions B:

Ethyl
(3R*,3'R*)-1-benzyl-2-oxo-5'-phenyl-7-(trifluoromethyl)-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3ha'):

White solid, mp 162-164 °C; IR (NaCl) 3421, 2978, 2868, 1740, 1647, 1613, 1597, 1491, 1446, 1381, 1350, 1296, 1126 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.11 (3H, t, J = 7.2 Hz), 3.61 (H, dd, J = 7.2 Hz), 3.72 (H, d, J = 16.8 Hz), 3.87 (H, d, J = 16.8 Hz), 7.43 (2H, d, J = 7.2 Hz), 7.64-7.77 (3H, m), 7.86 (1H, d, J = 8.0 Hz), 7.91 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 176.5, 170.1, 141.2, 135.9, 132.8, 131.7, 130.8, 128.5, 128.23, 128.21, 128.1, 127.6 (q, J = 3.1 Hz), 126.8, 125.6, 123.1 (q, J = 270.4 Hz), 122.3, 112.9 (q, J = 33.1 Hz), 80.9, 61.0, 50.0, 45.9 (d, J = 4.9 Hz), 38.7, 13.3. ESIHRMS: Found: m/z 4493.1739. Calcd for C₂₉H₂₄F₃N₂O₃: (M+H)⁺ 493.1739.
$J = 16.4, 9.6 \text{ Hz}$, 3.77 (1H, dd, $J = 9.6, 9.6 \text{ Hz}$), 3.93 (1H, dd, $J = 16.4, 9.6 \text{ Hz}$), 4.03 (1H, dq, $J = 10.8, 7.2 \text{ Hz}$), 4.10 (1H, dq, $J = 10.8, 7.2 \text{ Hz}$), 5.11 (1H, d, $J = 16.8 \text{ Hz}$), 5.27 (1H, d, $J = 16.8 \text{ Hz}$), 7.18-7.30 (6H, m), 7.41-7.51 (4H, m), 7.62 (1H, d, $J = 7.2 \text{ Hz}$), 7.90 (2H, d, $J = 6.8 \text{ Hz}$);

13C NMR (100 MHz, CDCl$_3$) δ 177.2, 176.2, 169.9, 142.1, 136.1, 134.3, 133.3, 131.7, 128.6, 128.3, 128.2, 127.6 (q, $J = 3.1 \text{ Hz}$), 127.4, 126.8, 125.9, 123.4 (q, $J = 270.1 \text{ Hz}$), 122.7, 113.2 (q, $J = 32.2 \text{ Hz}$), 80.4, 61.5, 52.0, 46.0 (q, $J = 3.3 \text{ Hz}$), 38.7, 13.8. ESIHRMS: Found: m/z 493.1733. Calculd for C$_{28}$H$_{24}$F$_{3}$N$_{2}$O$_{3}$: (M+H)$^{+}$ 493.1739.

Ethyl

(3R*,3’S*)-1-benzyl-5’-(naphthalen-2-yl)-2-oxo-3’,4’-dihydrospiro[indoline-3,2’-pyrrole]-3’-carboxylate (3ab):

![Chemical Structure](image)

In conditions A: 2 h, 91% yield as a single diastereomer

In conditions B: 0.5 h, 94% yield as an inseparable mixture of two diastereomers with dr = 10:1

Pale yellow solid, mp 195-197 °C; IR (NaCl) 3420, 3053, 2986, 1722, 1635, 1612, 1487, 1369, 1265, 1201, 1177 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 0.49 (3H, t, $J = 7.2 \text{ Hz}$), 3.64 (1H, dq, $J = 10.8, 7.2 \text{ Hz}$), 3.68 (1H, dd, $J = 16.8, 8.8 \text{ Hz}$), 3.78 (1H, dq, $J = 10.8, 7.2 \text{ Hz}$), 4.04 (1H, dd, $J = 16.8, 9.2 \text{ Hz}$), 4.11 (1H, dd, $J = 9.2, 8.8 \text{ Hz}$), 4.73 (1H, d, $J = 15.6 \text{ Hz}$), 5.34 (1H, dd, $J = 15.6 \text{ Hz}$), 6.74 (1H, d, $J = 8.0 \text{ Hz}$), 6.92 (1H, dd, $J = 7.6, 7.2 \text{ Hz}$), 6.99 (1H, d, $J = 7.6 \text{ Hz}$), 7.16 (1H, dd, $J = 8.0, 7.6 \text{ Hz}$), 7.29 (1H, dd, $J = 7.2, 7.2 \text{ Hz}$), 7.35 (2H, dd, $J = 7.2, 7.2 \text{ Hz}$), 7.44 (2H, d, $J = 7.2 \text{ Hz}$), 7.51-7.57 (2H, m), 7.85 (2H, d, $J = 8.4 \text{ Hz}$), 7.92 (1H, d, $J = 7.2 \text{ Hz}$), 8.09 (1H, d, $J = 8.4 \text{ Hz}$), 8.32 (1H, s); 13C NMR (100 MHz, CDCl$_3$) δ 176.7, 175.8, 170.4, 142.9, 135.5, 134.7, 132.7, 130.6, 129.5, 129.1, 128.8, 128.6, 128.2, 127.8, 127.7, 127.6, 127.5, 127.4 (overlapped), 126.5, 124.6, 124.4, 122.8, 82.9, 60.7, 49.8, 44.2, 38.5, 13.1. ESIHRMS: Found: m/z 475.2021. Calculd for C$_{31}$H$_{27}$N$_{2}$O$_{3}$: (M+H)$^{+}$ 475.2022.
Ethyl (3R*,3'5*)-1-benzyl-5'(4-methoxyphenyl)-2-oxo-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3ac):

In conditions A: 22 h, 90% yield as a single diastereomer

In conditions B: 20 min, 96% yield as an inseparable mixture of two diastereomers with dr = 3:1

White solid, mp 163-165 °C; IR (NaCl) 3420, 3055, 2982, 1722, 1612, 1489, 1466, 1265, 1219, 1178 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.47 (3H, t, J = 7.2 Hz), 3.56-3.66 (2H, m), 3.78 (1H, dq, J = 10.8, 7.2 Hz), 3.92 (3H, s), 3.98-4.05 (2H, m), 4.71 (1H, d, J = 15.6 Hz), 5.30 (1H, d, J = 15.6 Hz), 6.70 (1H, d, J = 8.0 Hz), 6.90-6.97 (3H, m), 7.03 (1H, d, J = 7.2 Hz), 7.14 (1H, dd, J = 8.0, 7.6 Hz), 7.28 (1H, d, J = 7.2 Hz), 7.33 (2H, dd, J = 7.6, 7.2 Hz), 7.39-7.43 (3H, m), 7.93 (1H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 176.2, 170.6, 158.4, 142.8, 135.6, 132.3, 130.7, 129.3, 128.5, 127.5, 127.4, 124.3, 122.6, 120.5, 111.1, 109.1, 81.1, 60.5, 55.3, 50.1, 44.1, 41.7, 13.1. ESIHRMS: Found: m/z 455.1969. Calcd for C₂₈H₂₇N₂O₄: (M+H)+ 455.1971.

Ethyl (3R*,3'S*)-1-benzyl-5'(4-chlorophenyl)-2-oxo-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3ad):

In conditions A: 5 h, 91% yield as a single diastereomer

In conditions B: 9 h, 94% yield as an inseparable mixture of two diastereomers with dr = 10:1
White solid, mp176-178 °C; IR (NaCl) 3429, 3053, 2984, 1722, 1645, 1612, 1489, 1369, 1265, 1200, 1091 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.48 (3H, t, \(J = 7.2\) Hz), 3.51 (1H, dd, \(J = 17.6, 10.0\) Hz), 3.64 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.75 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.88 (1H, d, \(J = 17.6, 9.2\) Hz), 4.05 (1H, dd, \(J = 10.0, 9.2\) Hz), 4.73 (1H, d, \(J = 15.6\) Hz), 5.30 (1H, d, \(J = 15.6\) Hz), 6.73 (1H, d, \(J = 7.6\) Hz), 6.90-6.96 (2H, m), 7.16 (1H, dd, \(J = 8.0, 7.6\) Hz), 7.29 (1H, d, \(J = 6.8\) Hz), 7.34 (2H, dd, \(J = 7.6, 7.2\) Hz), 7.39-7.42 (4H, m), 7.85 (1H, d, \(J = 8.8\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.6, 174.8, 170.4, 142.9, 137.6, 135.5, 131.6, 129.7, 129.6, 128.8, 128.7, 127.7, 127.6, 127.4, 124.4, 122.9, 109.4, 82.9, 60.9, 49.8, 44.3, 38.5, 13.2. ESIHRMS: Found: \(m/z\) 459.1476. Calcld for \(C_{27}H_{24}ClN_2O_3\): (M+H\(^{+}\)) 459.1475.

Ethyl

(3\(R^*,3'\)S\(^*\))-1-benzyl-5\(^{\prime}\)-(3-bromophenyl)-2-oxo-3\(^{\prime},4\)\(^{\prime}\)-dihydrospiro[indoline-3,2'-pyrrole]-3\(^{\prime}\)-carboxylate (3ae):

![Chemical Structure]

In conditions **A:** 11 h, 93% yield as a single diastereomer

In conditions **B:** 23 h, 72% yield as an inseparable mixture of two diastereomers with \(dr = 4:1\)

White solid, mp 150-152 °C; IR (NaCl) 3428, 3053, 2984, 1728, 1645, 1614, 1560, 1487, 1369, 1265, 1200, 1179 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.47 (3H, t, \(J = 7.2\) Hz), 3.50 (1H, dd, \(J = 17.6, 9.6\) Hz), 3.64 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.76 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.88 (1H, d, \(J = 17.6, 9.2\) Hz), 4.05 (1H, dd, \(J = 9.6, 9.2\) Hz), 4.72 (1H, d, \(J = 15.6\) Hz), 5.30 (1H, d, \(J = 15.6\) Hz), 6.73 (1H, d, \(J = 8.0\) Hz), 6.90-6.96 (2H, m), 7.16 (1H, dd, \(J = 8.0, 8.0\) Hz), 7.26-7.35 (4H, m), 7.41 (2H, d, \(J = 7.2\) Hz), 7.59 (1H, d, \(J = 8.0\) Hz), 7.80 (1H, d, \(J = 7.6\) Hz), 8.11 (1H, s); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.4, 174.6, 170.2, 142.8, 135.4, 135.0, 134.3, 131.0, 130.0, 129.7, 128.6, 127.6, 127.5, 127.4, 126.8, 124.3, 122.8, 122.7, 109.3, 82.8, 60.8, 49.7, 44.2, 38.5, 13.1. ESIHRMS: Found: \(m/z\) 503.0975. Calcld for \(C_{27}H_{24}^{79}BrN_2O_3\): (M+H\(^{+}\)) 503.0970.
Ethyl (3R*,3'S*)-1-benzyl-5'-(3-nitrophenyl)-2-oxo-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3af):

In conditions **A**: 23 h, 70% yield as a single diastereomer

In conditions **B**: 23 h, 38% yield as an inseparable mixture of two diastereomers with dr = 4:1

White solid, mp 163-165 °C; IR (NaCl) 3431, 3053, 2986, 1724, 1636, 1612, 1535, 1354, 1265, 1202 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.50 (3H, t, J = 7.2 Hz), 3.58 (1H, dd, J = 17.2, 10.0 Hz), 3.67 (1H, dq, J = 10.8, 7.2 Hz), 3.76 (1H, dq, J = 10.8, 7.2 Hz), 3.96 (1H, dd, J = 17.2, 8.8 Hz), 4.10 (1H, dd, J = 10.0, 8.8 Hz), 4.77 (1H, d, J = 15.6 Hz), 5.30 (1H, d, J = 15.6 Hz), 6.76 (1H, d, J = 7.6 Hz), 6.92-6.97 (2H, m), 7.17-7.22 (1H, m), 7.27-7.31 (1H, m), 7.35 (2H, dd, J = 7.6, 6.8 Hz), 7.42 (2H, d, J = 7.2 Hz), 7.63 (1H, dd, J = 8.0, 8.0 Hz), 8.26 (1H, d, J = 8.0 Hz), 8.34 (1H, d, J = 8.0 Hz), 8.74 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 173.9, 170.1, 148.4, 142.9, 135.4, 134.8, 133.9, 129.9, 129.6, 128.7, 127.7, 127.4, 127.3, 125.9, 124.4, 123.2, 122.9, 109.5, 83.1, 61.0, 49.7, 44.3, 38.6, 13.2. ESIHRMS: Found: m/z 470.1716. Calcld for C₂₇H₂₄N₃O₅: (M+H)⁺ 470.1716.

Ethyl (3R*,3'S*)-1-benzyl-2-oxo-5'-phenethyl-3',4'-dihydrospiro[indoline-3,2'-pyrrole]-3'-carboxylate (3ag):

In conditions **A**: 19 h, 78% yield as a single diastereomer
In conditions B: no desired product was detected.

Pink solid, mp 121-123 °C; IR (NaCl) 3433, 3053, 2984, 1719, 1636, 1612, 1489, 1454, 1369, 1265, 1199 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.44 (3H, t, J = 7.2 Hz), 2.77-2.92 (2H, m), 2.94-3.10 (3H, m), 3.44 (1H, dd, J = 17.6, 9.2 Hz), 3.58 (1H, dq, J = 10.8, 7.2 Hz), 3.69 (1H, dq, J = 10.8, 7.2 Hz), 3.87 (1H, dd, J = 9.6, 9.2 Hz), 4.66 (1H, d, J = 15.6 Hz), 5.27 (1H, d, J = 15.6 Hz), 6.66-6.69 (2H, m), 6.87 (1H, dd, J = 7.6, 7.6 Hz), 7.13 (1H, dd, J = 8.0, 7.6 Hz), 7.19-7.33 (8H, m), 7.38 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 181.3, 176.8, 170.4, 142.7, 140.6, 135.5, 129.4, 128.5, 128.5, 128.3, 127.6, 127.4 (overlapped), 126.2, 124.3, 122.7, 109.1, 82.5, 60.7, 49.7, 44.1, 41.1, 35.2, 32.3, 13.1. ESIHRMS: Found: m/z 453.2176. Calcd for C₂₉H₂₉N₂O₃: (M+H)⁺ 453.2178.

Ethyl (2R*,3S*)-1'-benzyl-2'-oxo-3,3a,4,5,6,7,8,9-octahydropyrrole[cyloocta[b]pyrrole-2,3'-indoline]-3-carboxylate (3ah):

In conditions A: 8 h, 83% yield, dr = 14:1.3:1, the major isomer was isolated and charcterized. White solid, mp 166-168 °C; IR (NaCl) 3422, 3053, 2986, 1722, 1628, 1614, 1466, 1368, 1265, 1204, 1180 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.42 (3H, t, J = 7.2 Hz), 1.37-1.44 (1H, m), 1.53-1.64 (2H, m), 1.70-1.99 (6H, m), 2.24-2.31 (1H, m), 2.46 (1H, ddd, 12.8, 11.6, 3.6 Hz), 2.69-2.75 (1H, m), 3.57 (1H, dq, J = 10.8, 7.2 Hz), 3.75 (1H, dq, J = 10.8, 7.2 Hz), 3.79-3.83 (2H, m), 4.68 (1H, d, J = 15.6 Hz), 5.25 (1H, d, J = 15.6 Hz), 6.69 (1H, d, J = 7.6 Hz), 6.89-6.96 (2H, m), 7.13 (1H, dd, J = 7.6, 7.6 Hz), 7.24-7.27 (1H, m), 7.31 (2H, dd, J = 7.6, 6.8 Hz), 7.40 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 187.8, 177.1, 170.3, 143.0, 135.7, 129.3, 128.6, 127.7, 127.6, 127.4, 124.0, 122.6, 109.1, 80.2, 60.5, 52.5, 52.1, 44.1, 31.1, 30.1,
25.6, 24.4, 24.2, 23.7, 13.1. ESIHRMS: Found: m/z 431.2335. Calcd for C_{27}H_{31}N_{2}O_{3}: (M+H)^+ 431.2335.

Ethyl

(2R*,3S*)-1'-benzyl-5'-chloro-2'-oxo-3,3a,4,5,6,7,8,9-octahydrospiro[cycloocta|b|pyrr-ole-2, 3'-indoline]-3-carboxylate (3gh):

In conditions A: 2 h, 78% yield, dr = 2.6:1.3:1, the major isomer was isolated and characterized. The structure was further confirmed by X-ray analysis.

Colorless crystal (CCDC 1436812), mp 182-184 °C; IR (NaCl) 3412, 3062, 2930, 1712, 1655, 1608, 1483, 1342, 1265, 1182, 1098 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.51 (3H, t, \(J = 7.2\) Hz), 1.37-1.44 (1H, m), 1.51-1.64 (2H, m), 1.70-2.04 (6H, m), 2.26-2.32 (1H, m), 2.47 (1H, ddd, 12.8, 12.0, 3.6 Hz), 2.69-2.75 (1H, m), 3.63 (1H, dq, \(J = 10.8, 7.2\) Hz), 3.74-3.87 (3H, m), 4.65 (1H, d, \(J = 15.6\) Hz), 5.24 (1H, d, \(J = 15.6\) Hz), 6.61 (1H, d, \(J = 8.4\) Hz), 6.93 (1H, s), 7.11 (1H, d, \(J = 8.4\) Hz), 7.25-7.28 (1H, m), 7.32 (2H, dd, \(J = 7.2, 7.2\) Hz), 7.37 (2H, d, \(J = 7.2\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 188.6, 176.6, 169.9, 141.5, 135.1, 129.4, 129.2, 128.7, 127.9, 127.7, 127.4, 124.5, 110.0, 80.1, 60.7, 52.6, 51.9, 44.2, 31.1, 30.1, 25.5, 24.2, 24.1, 23.6, 13.2. ESIHRMS: Found: m/z 465.1948. Calcd for C_{27}H_{30}ClN_{2}O_{3}: (M+H)^+ 465.1945.
6. TiCl₄-catalyzed reactions of vinyl azides 2 with 2-alkylidenemalonates 4 (Scheme 4 and 5)

6.1 Synthesis of 2-alkylidenemalonates 4 (typical procedure: synthesis of 4a)

To a solution of benzaldehyde (5.0 mmol, 0.51 mL) and dimethyl malonate (5.0 mmol, 0.57 mL) in toluene was added AcOH (1.0 mmol, 57.2 µL) and piperidine (1.0 mmol, 98.8 µL) at room temperature. The reaction was then stirred under reflux conditions for 12 h until the starting materials were consumed. The mixture was cooled down to room temperature and evaporated to remove the solvent. The crude material was purified by flash column chromatography (silica gel; ethylacetate: hexane = 10: 90) to give dimethyl 2-benzylidenemalonate¹⁰ (4a, 4.1 mmol, 0.903 g) in 82% yield as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 3.846 (3H, s), 3.852 (3H, s), 7.38-7.44 (5H, m), 7.78 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 164.5, 142.9, 132.8, 130.7, 129.4, 128.9, 125.5, 52.7.

2-Alkylidenemalonate 4b,¹¹ 4c-4f,¹⁰ 4h,¹² and 4i¹¹ were all known compounds and prepared following the reported procedures. Diethyl 2-ethylidenemalonate (4g) was purchased from Sigma-Aldrich Co., Inc.

![Reagents](image_url)
6.2 Optimization of the reaction conditions

Table S2

<table>
<thead>
<tr>
<th>entry</th>
<th>Lewis acid</th>
<th>x</th>
<th>y</th>
<th>temp.</th>
<th>time</th>
<th>yield[^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti\textsubscript{4}Cl</td>
<td>1.2</td>
<td>10</td>
<td>rt</td>
<td>10 h</td>
<td>54%</td>
</tr>
<tr>
<td>2</td>
<td>Ti\textsubscript{4}Cl</td>
<td>1.5</td>
<td>10</td>
<td>rt</td>
<td>9 h</td>
<td>63%</td>
</tr>
<tr>
<td>3</td>
<td>Ti\textsubscript{4}Cl</td>
<td>1.5</td>
<td>10</td>
<td>reflux</td>
<td>9 h</td>
<td>71%</td>
</tr>
<tr>
<td>4</td>
<td>Ti\textsubscript{4}Cl</td>
<td>1.5</td>
<td>20</td>
<td>reflux</td>
<td>9 h</td>
<td>72%</td>
</tr>
<tr>
<td>5</td>
<td>Ti\textsubscript{4}Cl</td>
<td>2.0</td>
<td>10</td>
<td>reflux</td>
<td>9 h</td>
<td>76% (75%)[^c]</td>
</tr>
<tr>
<td>6</td>
<td>Ti\textsubscript{4}Cl</td>
<td>3.0</td>
<td>10</td>
<td>reflux</td>
<td>9 h</td>
<td>78% (76%)[^c]</td>
</tr>
<tr>
<td>7</td>
<td>Ti\textsubscript{4}Cl</td>
<td>1.5</td>
<td>20</td>
<td>reflux</td>
<td>9 h</td>
<td>76%</td>
</tr>
<tr>
<td>8</td>
<td>BF\textsubscript{3}•OEt\textsubscript{2}</td>
<td>2.0</td>
<td>200</td>
<td>rt-reflux</td>
<td>22 h[^d]</td>
<td>0%[^e]</td>
</tr>
</tbody>
</table>

[^a]: All the reactions were conducted in 0.30 mmol scale.
[^b]: ¹H NMR yields of crude materials.
[^c]: Isolated yields.
[^d]: The reaction was stirred at rt for 15 h and then reflux for 7 h.
[^e]: 4a was recovered in 94% yield.

6.3. Typical procedure for synthesis of 5aa

To a solution of 2-alkyldienmalonate 4a (0.30 mmol, 66.1 mg) and vinyl azide 2a (0.60 mmol, 87.1 mg) in CH\textsubscript{2}Cl\textsubscript{2} was added TiCl\textsubscript{4} (1.0 M in CH\textsubscript{2}Cl\textsubscript{2}, 0.030 mmol, 30 µL) at room temperature. The reaction mixture was stirred under reflux (bath temp. at 40 °C) for 9 hours untill 2-alkyldienmalonate 4a was consumed. The reaction mixture was cooled down to room temperature, quenched with saturated aqueous NaHCO\textsubscript{3}, and extracted trice with CH\textsubscript{2}Cl\textsubscript{2}. The combined organic layers was washed with brine and dried over MgSO\textsubscript{4}. After filtration, the solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; ethyl acetate: hexane = 20:80) to give dimethyl
2,4-diphenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5aa) (0.225 mmol, 75.9 mg) in 75% yield.

Pale yellow solid; mp: 96-98 °C; IR (NaCl) 3421, 3055, 2988, 1718, 1647, 1630, 1265 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.20 (3H, s), 3.72 (3H, s), 4.44 (1H, dd, J = 15.6, 5.2 Hz), 4.52 (1H, dd, J = 7.2, 5.2 Hz), 4.59 (1H, dd, J = 15.6, 7.2 Hz), 7.18-7.22 (2H, m), 7.23-7.30 (3H, m), 7.33-7.42 (3H, m), 7.82-7.85 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.2, 167.0, 138.0, 133.3, 130.2, 128.5, 128.0, 127.7, 75.7, 65.6, 54.0, 53.1, 52.0. ESIHRMS: Found: m/z 338.1393. Calcld for C₂₀H₂₀NO₄: (M+H)⁺ 338.1392.

Dimethyl 2-(naphthalen-2-yl)-4-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ab):

![Chemical structure](image)

23 h, 60% yield, brown stick oil; IR (NaCl) 3422, 3053, 2986, 1734, 1630, 1618, 1435, 1315, 1265, 1205, 1088 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.21 (3H, s), 3.73 (3H, s), 4.51 (1H, dd, J = 15.6, 4.8 Hz), 4.56 (1H, dd, J = 7.2, 4.8 Hz), 4.65 (1H, dd, J = 15.6, 7.2 Hz), 7.21-7.31 (5H, m), 7.46-7.53 (2H, m), 7.82 (2H, d, J = 8.4 Hz), 7.87 (1H, d, J = 7.6 Hz), 8.02 (1H, dd, J = 8.8, 2.0 Hz), 8.28 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 167.2, 167.1, 138.1, 134.1, 132.6, 130.7, 129.0, 128.6 (overlapped), 128.3, 127.7, 127.6, 127.5, 127.2, 126.2, 125.5, 75.7, 65.7, 54.2, 53.2, 52.0. ESIHRMS: Found: m/z 388.1546. Calcld for C₂₄H₂₂NO₄: (M+H)⁺ 388.1549.

Dimethyl 2-(4-chlorophenyl)-4-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ad):

![Chemical structure](image)

24 h, 71% yield, yellow stick oil; IR (NaCl) 3419, 3055, 2953, 1728, 1622, 1493, 1435, 1317, 1265, 1232, 1093 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.19 (3H, s), 3.74 (3H, s), 4.43 (1H, dd, J = 15.6, 4.4 Hz), 4.52 (1H, dd, J = 7.2, 4.4 Hz), 4.58 (1H, dd, J = 15.6, 7.2 Hz), 7.16-7.18 (2H,
m), 7.22-7.30 (3H, m), 7.33 (2H, d, J = 8.8 Hz), 7.80 (2H, d, J = 8.8 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 168.4, 167.0, 166.1, 138.1, 136.5, 131.8, 130.1, 128.6, 128.3, 127.8, 75.8, 65.9, 54.0, 53.3, 52.2. ESIHHRMS: Found: m/z 372.1002. Calcd for C$_{20}$H$_{19}$ClNO$_4$: (M+H)$^+$ 372.1003.

Dimethyl 2-(3-bromophenyl)-4-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ae):

5 h, 67% yield, yellow stick oil; IR (NaCl) 3431, 3057, 2953, 1730, 1662, 1560, 1435, 1317, 1265, 1230, 1090 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 3.20 (3H, s), 3.75 (3H, s), 4.43 (1H, dd, J = 16.0, 4.4 Hz), 4.52 (1H, dd, J = 7.2, 4.4 Hz), 4.59 (1H, dd, J = 16.0, 7.2 Hz), 7.16-7.20 (2H, m), 7.22-7.30 (4H, m), 7.53 (1H, d, 8.0 Hz), 7.70 (1H, d, J = 8.0 Hz), 8.09 (1H, s); 13C NMR (100 MHz, CDCl$_3$) δ 168.2, 166.8, 165.9, 137.9, 135.3, 133.1, 131.6, 129.4, 128.5, 128.3, 127.7, 127.2, 122.2, 75.8, 65.7, 53.9, 53.2, 52.1. ESIHHRMS: Found: m/z 416.0479. Calcd for C$_{20}$H$_{19}$BrNO$_4$: (M+H)$^+$ 416.0497.

Dimethyl 2-(3-nitrophenyl)-4-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5af):

5 h, 61% yield, yellow stick oil; IR (NaCl) 3434, 3053, 2986, 1734, 1618, 1533, 1435, 1350, 1265, 1233, 1091 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 3.21 (3H, s), 3.79 (3H, s), 4.48 (1H, dd, J = 16.0, 4.0 Hz), 4.56 (1H, dd, J = 7.2, 4.0 Hz), 4.64 (1H, dd, J = 16.0, 7.2 Hz), 7.17-7.19 (2H, m), 7.23-7.33 (3H, m), 7.55 (1H, dd, J = 8.0, 8.0 Hz), 8.19 (1H, d, J = 8.0 Hz), 8.26 (1H, d, J = 8.0 Hz), 8.80 (1H, s); 13C NMR (100 MHz, CDCl$_3$) δ 167.9, 166.8, 165.2, 148.0, 138.0, 135.1, 134.5, 128.9, 128.5, 128.3, 127.9, 124.7, 123.9, 76.0, 66.1, 53.7, 53.4, 52.3. ESIHHRMS: Found: m/z 383.1241. Calcd for C$_{20}$H$_{19}$NO$_6$: (M+H)$^+$ 383.1243.

S22
Diethyl 2-phenyl-4-(p-tolyl)-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ba):

\[
\text{Me} \quad \text{Et}_2\text{O} \quad \text{CO}_2\text{Et} \\
\text{Ph} \\
\text{N}
\]

20 h, 75% yield, pale yellow stick oil; IR (NaCl) 3431, 3053, 2984, 1732, 1610, 1516, 1449, 1346, 1265, 1219, 1098 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.84 (3H, t, \(J = 7.2\) Hz), 1.11 (3H, t, \(J = 7.2\) Hz), 2.29 (3H, s), 3.64-3.76 (2H, m), 4.09-4.23 (2H, m), 4.39 (1H, dd, \(J = 14.4, 4.0\) Hz), 4.49-4.58 (2H, m), 7.06-7.12 (4H, m), 7.31-7.40 (3H, m), 7.84 (2H, d, \(J = 8.0\) Hz), \((1H, dd, J = 7.2, 5.2\) Hz), 4.59 (1H, dd, \(J = 15.6, 7.2\) Hz), 7.18-7.22 (2H, m), 7.23-7.30 (3H, m), 7.33-7.42 (3H, m), 7.82-7.85 (2H, m); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.0, 167.8, 166.7, 136.2, 134.9, 133.7, 130.0, 128.8, 128.6, 128.4, 127.7, 75.6, 65.4, 62.1, 61.3, 53.4, 20.9, 13.6, 13.3. ESIHRMS: Found: \(m/z\) 380.1862. Calcd for C\(_{23}\)H\(_{26}\)NO\(_4\): (M+H\(^+\)) 380.1862.

Diethyl 4-(4-methoxyphenyl)-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ca):

\[
\text{MeO} \quad \text{MeO} \quad \text{Ph} \\
\text{N} \\
\text{MeCO}_2\text{Me} \\
\text{MeCO}_2\text{Me}
\]

2 h, 63% yield, yellow solid, mp 100-102 °C; IR (NaCl) 3421, 3055, 2955, 1734, 1638, 1612, 1514, 1435, 1265, 1232, 1180 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.26 (3H, s), 3.71 (3H, s), 3.76 (3H, s), 4.39 (1H, dd, \(J = 16.0, 5.2\) Hz), 4.47 (1H, dd, \(J = 7.2, 5.2\) Hz), 4.57 (1H, dd, \(J = 16.0, 7.2\) Hz), 6.81 (2H, d, \(J = 8.4\) Hz), 7.12 (2H, d, \(J = 8.4\) Hz), 7.33-7.41 (3H, m), 7.82 (2H, d, \(J = 8.4\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.6, 167.2, 167.1, 159.0, 133.3, 130.2, 129.8, 129.6, 128.4, 127.9, 113.6, 75.5, 65.7, 55.1, 53.4, 53.0, 52.0. ESIHRMS: Found: \(m/z\) 368.1497. Calcd for C\(_{21}\)H\(_{22}\)NO\(_5\): (M+H\(^+\)) 368.1498.
Diethyl 4-(2-chlorophenyl)-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5da):

\[
\begin{align*}
\text{Cl} & \quad \text{N} & \quad \text{Ph} \\
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{Me}
\end{align*}
\]

11 h, 60% yield, pale yellow solid, mp 116-118 °C; IR (NaCl) 3439, 3055, 2985, 2953, 1732, 1645, 1626, 1477, 1435, 1265, 1066 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.22 (3H, s), 3.75 (3H, s), 4.41 (1H, dd, \(J = 16.8, 4.8\) Hz), 4.63 (1H, dd, \(J = 16.8, 8.0\) Hz), 5.12 (1H, dd, \(J = 8.0, 4.8\) Hz), 7.14-7.19 (3H, m), 7.34-7.43 (4H, m), 7.88 (2H, d, \(J = 7.2\) Hz); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.4, 167.0, 166.9, 136.6, 134.9, 132.9, 130.4, 129.4, 128.8, 128.5, 128.1, 126.8, 75.0, 66.5, 65.1, 53.6, 53.3, 52.2. ESIHRMS: Found: m/z 372.1008. Calcld for C\(_{20}\)H\(_{19}\)ClNO\(_4\): (M+H)\(^+\) 372.1003.

Diethyl 4-(4-cyanophenyl)-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ea):

\[
\begin{align*}
\text{NC} & \quad \text{N} & \quad \text{Ph} \\
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{Me}
\end{align*}
\]

18 h, 67% yield, white solid, mp 142-144 °C; IR (NaCl) 3431, 3055, 2986, 2230, 1732, 1636, 1611, 1435, 1317, 1265, 1233, 1089 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.25 (3H, s), 3.74 (3H, s), 4.40 (1H, dd, \(J = 15.2, 4.0\) Hz), 4.55-4.64 (2H, m), 7.32-7.45 (5H, m), 7.58 (2H, d, \(J = 8.4\) Hz), 7.82 (2H, d, \(J = 7.2\) Hz); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.1, 167.2, 166.7, 143.7, 132.9, 132.0, 130.5, 129.3, 128.6, 128.0, 118.4, 111.6, 75.6, 65.1, 53.6, 53.3, 52.2. ESIHRMS: Found: m/z 363.1345. Calcld for C\(_{21}\)H\(_9\)N\(_2\)O\(_4\): (M+H)\(^+\) 363.1345.

Dimethyl (E)-2-phenyl-4-styryl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5fa):

\[
\begin{align*}
\text{Ph} & \quad \text{N} & \quad \text{Ph} \\
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{Me}
\end{align*}
\]

S24
6 h, 58% yield, yellow stick oil; IR (NaCl) 3419, 3057, 2953, 1736, 1653, 1616, 1576, 1494, 1435, 1265, 1227, 1184 1065 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.68 (3H, s), 3.72 (3H, s), 3.98 (1H, ddd, J = 8.8, 7.2, 6.4 Hz), 4.08 (1H, dd, J = 16.4, 6.4 Hz), 4.42 (1H, dd, J = 16.4, 7.2 Hz), 6.15 (1H, dd, J = 15.6, 8.8 Hz), 6.55 (1H, d, J = 15.6 Hz), 7.22-7.44 (8H, m), 7.83 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 167.6, 167.4, 136.5, 133.6, 133.2, 130.3, 128.5, 128.3, 128.0, 127.8, 126.3, 125.7, 73.8, 64.8, 53.0, 52.6. ESIHRMS: Found: m/z 364.1548. Calcld for C₂₂H₂₂NO₄: (M+H)⁺ 364.1549.

Diethyl 4-methyl-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ga):

![Diethyl 4-methyl-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate](image)

10 min, 60% yield, pale yellow stick oil; IR (NaCl) 3431, 2980, 2937, 1730, 1662, 1614, 1576, 1447, 1368, 1252, 1190 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.09 (3H, t, J = 7.2 Hz), 1.17 (3H, d, J = 7.2 Hz), 1.22 (3H, t, J = 7.2 Hz), 3.21-3.28 (1H, m), 3.70 (1H, dd, J = 16.0, 7.2 Hz), 4.06-4.18 (2H, m), 4.20-4.33 (3H, m), 7.32-7.40 (3H, m), 7.74 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 168.4, 167.2, 133.9, 130.0, 128.2, 127.8, 72.8, 66.6, 61.8, 61.6, 43.6, 14.4, 14.0, 13.6. ESIHRMS: Found: m/z 304.1547. Calcld for C₁₇H₂₂NO₄: (M+H)⁺ 304.1549.

Dimethyl 4-phenethyl-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ha):

![Dimethyl 4-phenethyl-2-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate](image)

2 h, 61% yield, pale yellow stick oil; IR (NaCl) 3421, 3053, 2953, 1736, 1647, 1628, 1435, 1265, 1202, 1184 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.66-1.76 (1H, m), 1.99-2.07 (1H, m), 2.65-2.72 (2H, m), 3.09-3.17 (1H, m), 3.61 (3H, s), 3.74 (3H, s), 3.75 (1H, dd, J = 16.0, 8.8 Hz), 4.34 (1H, dd, J = 16.0, 7.6 Hz), 7.17-7.21 (3H, m), 7.28 (2H, dd, J = 8.0, 7.2 Hz), 7.32-7.41 (3H, m), 7.68 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 168.6, 167.5, 141.1, 133.5, 130.2,
128.4, 128.3, 128.1, 127.9, 126.1, 72.0, 64.7, 52.8, 52.5, 49.0, 34.2, 31.3. ESIHRMS: Found: m/z 366.1707. Calcd for C_{22}H_{24}NO_{4\text{a}}: (M+H)^{+} 366.1705.

Methyl (3aR*,9bS*)-4-Oxo-3-phenyl-1,9b-dihydrochromeno[3,4-c]pyrrole-3a(4\text{f})-carboxylate (5ia):

![X-ray of 5ia](image)

20 mol\% of TiCl$_4$ was used. 20 h, 83\% yield, colorless crystal (CCDC 1436813); mp 174-176 °C; IR (NaCl) 3421, 2986, 1763, 1742, 1607, 1409, 1308, 1265, 1184, 1111 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 3.69 (3H, s), 3.80 (1H, dd, J = 16.0, 10.0 Hz), 4.16 (1H, dd, J = 10.0, 7.6 Hz), 4.57 (1H, d, J = 16.0, 7.6 Hz), 7.18 (2H, dd, J = 8.0, 7.2 Hz), 7.28 (1H, d, J = 7.6 Hz), 7.34 (1H, dd, J = 8.0, 7.6 Hz), 7.40-7.48 (3H, m), 7.97 (2H, d, J = 7.6 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 169.5, 168.7, 162.1, 150.0, 132.3, 131.0, 129.3, 128.9, 128.5, 128.4, 125.1, 118.7, 117.2, 66.3, 65.6, 53.8, 49.4. ESIHRMS: Found: m/z 322.1079. Calcd for C$_{19}$H$_{16}$NO$_4$: (M+H)$^+$ 322.1079.

7. Elucidation of the reaction mechanisms

7.1 The reaction of (Z)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetonitrile (Z-1d) with vinyl azide 2a

The reaction of (Z)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetonitrile (Z-1d) with vinyl azide 2a was conducted under the standard reaction conditions (Scheme S1). On the contrary to the reaction of E-isomer, that of Z-isomer proceeded very slowly, providing product 3da in only 22\% yield with the same diastereoselectivity even after 24 h of the reaction time. Interestingly, the E-isomer was isolated in 12\% yield along with recovery of Z-1d in 62\% yield.
Scheme S1.

We wondered if the E-Z isomerization takes place under the reaction conditions. Thus, Z-1d was solely treated under the standard reaction conditions (Scheme S2). As expected, isomerization could be observed albeit in the slow reaction rate (the E-1d was formed in 8% yield after 24 h).

Scheme S2.

Based on these results, it could be speculated that only E-isomers can react with vinyl azide 2a under the standard reaction conditions. The Z-isomer could form internal chelation (Scheme S3) to prevent coordination of Lewis acids to both 1 and vinyl azides 2 in the state A’ with the favoured bimolecular allignment described in Scheme 6.

Scheme S3.
7.2 Formation of 5aa’ and 5aa” (reference 11)

In the reaction of 4a and 2a in 2 mmol scale, in addition to the formation of 1-pyrroline 5aa (73% yield), a trace amount (>1% yield) of another 1-pyrroline 5aa’ and acyclic amide 5aa” were isolated (Scheme S4). There might be two mechanistic possibilities for the formation of 5aa’: 1) nucleophile substitution reaction of the active methine carbanion on the iminodiazonium ion D (Scheme 6-b); or 2) ring-expansion of azidocyclobutane intermediate E (Scheme 6-b) by migration of the quaternary carbon having two methoxycarbonyl groups. The formation of 5aa’ should be enabled via the Schmidt type migration of the iminodiazonium intermedaite D (Scheme 6-b) followed by hydrolysis of the resulting nitririum ion. Nonetheless, the formation of 5aa’ and 5aa” supports the mechanistic proposal in Scheme 6 including stepwise sequence of conjugate addtion of vinyl azides, azidocyclobutane formation, and ring-expansion.

Scheme S4.
Dimethyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2,2-dicarboxylate (5aa') :

Yellow stick oil including a small amount of inseparable impurity; IR (NaCl) 3053, 2983, 1730, 1618, 1516, 1445, 1265, 1227, 1093 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.26 (3H, s), 3.43 (1H, dd, \(J = 17.6, 5.6\) Hz), 3.66 (1H, dd, \(J = 17.6, 9.2\) Hz), 3.84 (3H, s), 4.54 (1H, dd, \(J = 9.2, 5.6\)), 7.21-7.28 (5H, m), 7.44-7.54 (3H, m), 7.99 (2H, d, \(J = 7.2\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 178.0, 169.5, 168.1, 139.4, 133.2, 131.7, 128.6, 128.5, 128.3, 128.2, 127.4, 91.8, 53.3, 52.0, 48.6, 43.5. ESIHRMS: Found: \(m/z\) 338.1392. Calcd for C\(_{20}\)H\(_{20}\)NO\(_4\): (M+H\(^+\)) \(338.1392\).

Dimethyl 2-(3-oxo-1-phenyl-3-(phenylamino)propyl)malonate (5aa'') :

Yellow stick oil including a small amount of inseparable impurity; IR (NaCl) 3319, 3059, 2955, 1748, 1732, 1666, 1599, 1499, 1265, 1153 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.77 (1H, dd, \(J = 14.4, 8.0\) Hz), 2.91 (1H, dd, \(J = 14.4, 5.2\) Hz), 3.48 (3H, s), 3.75 (3H, s), 3.90 (1H, d, \(J = 9.2\) Hz), 4.01 (1H, ddd, \(J = 9.2, 8.0, 5.2\) Hz), 7.05 (1H, t, \(J = 7.2\) Hz), 7.23-7.34 (10H, m); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.8, 168.6, 168.0, 140.0, 137.6, 128.8, 128.7, 127.9, 127.5, 124.2, 119.8, 56.7, 52.8, 52.5, 42.2, 41.7. ESIHRMS: Found: \(m/z\) 356.1496. Calcd for C\(_{20}\)H\(_{22}\)NO\(_5\): (M+H\(^+\)) \(356.1498\).

7.3 The reaction of 1-ethyl 3-methyl 2-benzylidenemalonate (4j and 4j', E/Z mixtures) with vinyl azide 2a

To confirm the stepwise nature of the present process, 1-ethyl-3-methyl 2-benzylidenemalonate was prepared from benzaldehyde and ethyl methyl malonate\(^{14}\) by following the typical procedure (see Section 6.1). Purification of the crude materials by flash column
chromatography gave two sets of E/Z mixtures having different E/Z ratio: 4j (E:Z = 1:1.4) and 4j’ (E:Z = 2.5:1).15

1-Ethyl 3-methyl-2-benzylidemalonate (4j) (E/Z = 1:1.4)

$$\text{Et} \quad \text{MeO}_2\text{C} \quad \text{Ph} \quad \text{CO}_2\text{Et}$$

1H NMR (400 MHz, CDCl$_3$) δ 1.27 (3H×1, t, $J = 7.2$ Hz), 1.33 (3H×1.4, t, $J = 7.2$ Hz), 3.84 (3H×1+3H×1.4, s), 4.28-4.36 (2H×1+2H×1.4, m), 7.34-7.46 (5H×1+5H×1.4, m), 7.75 (1H×1.4, s), 7.76 (1H×1, s); 13C NMR (100 MHz, CDCl$_3$) δ 167.1, 166.5, 164.5, 163.9, 142.5, 142.4, 132.8 (overlapped), 130.5 (overlapped), 129.4, 129.3, 128.8, 128.7, 125.90, 125.88, 61.7, 61.6, 52.5 (overlapped), 14.1, 13.8.

1-Ethyl 3-methyl-2-benzylidemalonate (4j’) (E/Z = 2.5:1)

$$\text{Et} \quad \text{MeO}_2\text{C} \quad \text{Ph} \quad \text{CO}_2\text{Et}$$

A trace amount of inseparable impurity is contained. 1H NMR (400 MHz, CDCl$_3$) δ 1.27 (3H×2.5, t, $J = 7.2$ Hz), 1.33 (3H×1, t, $J = 7.2$ Hz), 3.84 (3H×2.5+3H×1, s), 4.28-4.36 (2H×2.5+2H×1, m), 7.34-7.46 (5H×2.5+5H×1, m), 7.75 (1H×1, s), 7.76 (1H×2.5, s); 13C NMR (100 MHz, CDCl$_3$) δ 167.1, 166.6, 164.5, 164.0, 142.5, 142.4, 132.8 (overlapped), 130.5 (overlapped), 129.4, 129.3, 128.8, 128.7, 125.90, 125.88, 61.7, 61.6, 52.5 (overlapped), 14.1, 13.8.

4j and 4j’ were treated with 20 mol% of TiCl$_4$ in CH$_2$Cl$_2$ under reflux reaction conditions (Scheme S5). Both of the reactions provided product 5ja with the same diastereoselectivity (dr = 1.1:1). These results further support the proposed stepwise mechanism including active methine enolate anion D.
Scheme S5.

\[
\begin{align*}
\text{Ph} & \quad \text{MeO}_2\text{C} \quad \text{CO}_2\text{Et} \quad 4j \quad (E/Z = 1:1.4) \\
\text{N} & \quad \text{N} \quad \text{Ph} \quad 2a \quad (3 \text{ equiv}) \quad \text{TiCl}_4 (20 \text{ mol}) \quad \text{reflux, } 3 \text{ h} \\
\text{Ph} & \quad \text{MeO}_2\text{C} \quad \text{CO}_2\text{Et} \quad 4j' \quad (E/Z = 2.5:1) \\
\text{N} & \quad \text{N} \quad \text{Ph} \quad 2a \quad (3 \text{ equiv}) \quad \text{TiCl}_4 (20 \text{ mol}) \quad \text{reflux, } 6 \text{ h} \\
\end{align*}
\]

3-Ethyl 3-methyl 2,4-diphenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (5ja) :

Yellow stick oil, IR (NaCl) as the mixture: 2976, 2934, 2866, 1732, 1616, 1605, 1576, 1494, 1444, 1369, 1118, 1028 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) for the major isomer: \(\delta 0.79 (3\text{H, t, } J = 7.2 \text{ Hz}), 3.62-3.67 (2\text{H, m}), 3.72 (3\text{H, s}), 4.41-4.46 (1\text{H, m}), 4.51-4.61 (2\text{H, m}), 7.20-7.28 (5\text{H, m}), 7.33-7.41 (3\text{H, m}), 7.82-7.85 (2\text{H, m})\); for the minor isomer: \(1.10 (3\text{H, t, } J = 7.2 \text{ Hz}), 3.21 (3\text{H, s}), 4.18 (2\text{H, q, } J = 7.2 \text{ Hz}), 4.41-4.46 (1\text{H, m}), 4.51-4.61 (2\text{H, m}), 7.20-7.28 (5\text{H, m}), 7.33-7.41 (3\text{H, m}), 7.82-7.85 (2\text{H, m})\); \(^13\)C NMR (100 MHz, CDCl\(_3\)) as the mixture: \(\delta 168.7, 167.9, 167.5, 167.4, 167.1, 166.5, 138.2, 138.0, 133.5, 133.4, 130.1, 130.1, 128.6, 128.6, 128.5, 128.2, 128.2, 127.8, 127.8, 127.6, 127.5, 75.8, 75.5, 65.54, 65.46, 62.3, 61.4, 53.8, 53.7, 53.0, 51.9, 13.6, 13.2\). ESIHRMS: Found: \(m/z\) 352.1547. Calcld for C\(_{21}\)H\(_{22}\)NO\(_4\): (M+H\(^{+}\)) 352.1549.

S31
7.4. Origin of the diastereoselectivity in the reactions of cyclic vinyl azide 2h

The diastereoselectivity for the reaction of cyclic vinyl azide 2h (Scheme 3) could be rationalized as shown in Scheme S6.

Scheme S6

8. Further transformation of products 3aa, 3ea, and 5aa (Scheme 7)

8.1 Reduction of 3aa and 3ea

Typical procedure for reduction of 3aa:

To a solution of 3aa (0.2 mmol, 84.9 mg) in the mixed solvent of EtOH and AcOH (10:1, 2 mL) was added NaBH₃CN (1.2 mmol, 75.4 mg) at room temperature. The reaction mixture was
stirred for 22 h at the same temperature and then quenched with saturated aqueous NaHCO₃. The mixture was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; ethyl acetate: hexane = 20:80) to give ethyl (3R*,3'S*,5'S*)-1-benzyl-2-oxo-5'-phenylspiro[indoline-3,2'-pyrrolidine]-3'-carboxylate (6a, 0.186 mmol, 79.3 mg, dr = 43:1) in 93% yield.

Colorless crystal (CCDC 1436814); mp 148-150 °C; IR (NaCl) 3352, 3055, 2982, 2936, 1732, 1614, 1487, 1468, 1371, 1178, 1028 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.51 (3H, t, J = 7.2 Hz), 2.47 (1H, s br), 2.52-2.60 (2H, m), 3.57 (1H, dq, J = 10.4, 7.2 Hz), 3.65 (1H, dq, J = 10.4, 7.2 Hz), 3.75 (1H, dd, J = 11.6, 7.6 Hz), 4.71 (1H, d, J = 15.6 Hz), 4.87 (1H, dd, J = 10.4, 6.0 Hz), 5.13 (1H, d, J = 15.6 Hz), 6.68 (1H, d, J = 7.6 Hz), 7.00 (1H, dd, J = 7.6, 7.6 Hz), 7.14 (1H, dd, J = 8.0, 7.6 Hz), 7.26-7.38 (9H, m), 7.51 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 170.4, 142.7, 142.2, 135.6, 131.2, 129.0, 128.6, 128.4, 127.6, 127.5, 127.4, 126.7, 124.4, 122.9, 108.9, 68.5, 61.8, 60.4, 53.8, 44.0, 37.7, 13.3. ESIHRMS: Found: m/z 427.2021. Calcd for C₂₇H₂₇N₂O₃: (M+H)+ 427.2022.

Ethyl (3R*,3'S*,5'S*)-2-oxo-5'-phenylspiro[indoline-3,2'-pyrrolidine]-3'-carboxylate (6e):

Colourless stick oil, IR (NaCl) 3412, 3088, 2976, 2868, 1720, 1620, 1493, 1472, 1373, 1269, 1186, 1098 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.76 (3H, t, J = 7.2 Hz), 2.46 (1H, s), 2.47-2.59 (2H, m), 3.64-3.73 (3H, m), 4.83 (1H, dd, J = 10.4, 5.6 Hz), 6.84 (1H, d, J = 7.6 Hz), 7.04 (1H, dd, J = 7.6, 7.6 Hz), 7.22 (1H, dd, J = 7.6, 7.6 Hz), 7.28-7.37 (3H, m), 7.50 (2H, d, J = 7.6 Hz), 7.59 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 182.4, 170.5, 142.2, 140.8, 131.5, 129.2, 128.5, 127.5, 126.7, 124.7, 122.8, 109.8, 69.1, 61.8, 60.5, 53.7, 37.5, 13.4. ESIHRMS: Found: m/z 337.1553. Calcd for C₂₀H₂₁N₂O₃: (M+H)+ 337.1552.
8.2 Decarboxylation of 5aa

To a solution of 5aa (0.2 mmol, 67.5 mg) in DMSO (2 mL) was added LiCl (0.5 mmol, 21.2 mg) and H₂O (0.8 mmol, 14.4 µL) at room temperature. The reaction mixture was heated at 150 °C and stirred for 17 h until 5aa was consumed. The reaction was cooled down to room temperature and diluted with water. The mixture was extracted three times with ethyl acetate. The combined organic layers were washed with water and brine and then dried over MgSO₄. After filtration, the solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; ethyl acetate: hexane = 15:85) to give 3,5-diphenyl-3,4-dihydro-2H-pyrrole (7) (0.158 mmol, 35.0 mg) in 79% yield as a yellow sticky oil.

IR (NaCl) 3397, 3061, 1614, 1576, 1495, 1339, 1265, 1179 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.08 (1H, dddd, J = 16.8, 6.4, 2.0, 1.6 Hz), 3.48 (1H, dddd, J = 16.8, 9.6, 2.0, 1.6 Hz), 3.68 (1H, dddd, J = 9.6, 8.8, 6.4, 6.0 Hz), 4.13 (1H, dddd, J = 16.4, 6.0, 2.0, 1.6 Hz), 4.54 (1H, dddd, J = 16.4, 8.8, 2.0, 1.6 Hz), 7.21-7.24 (3H, m), 7.30-7.34 (2H, m), 7.42-7.47 (3H, m), 7.88-7.90 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 145.0, 134.3, 130.5, 128.7, 128.5, 127.6, 126.8, 126.4, 69.6, 44.0, 42.9. ESIHRMS: Found: m/z 222.1284. Calcd for C₁₆H₁₆N: (M+H)⁺ 222.1283.
8.3 Decarboxylation and further transformation of 5aa

To a solution of 5aa (0.2 mmol, 67.5 mg) in DMSO (2 mL) was added LiCl (0.2 mmol, 8.5 mg) and H₂O (0.8 mmol, 7.2 µL) at room temperature. The reaction mixture was heated at 130 °C and stirred for 18 h until 5aa was consumed. The reaction was cooled down to room temperature and diluted with water. The mixture was extracted trice with ethyl acetate. The combined organic layers were washed with water and brine and then dried over MgSO₄. The solvent was removed in vacuo and the crude material was purified by flash column chromatography (silica gel; ethyl acetate: hexane = 15:85) to give 8. Auto-oxidation of 8 took place by exposure of 8 under air for overnight and then purification of the mixture by flash column chromatography (silica gel; ethyl acetate: hexane = 30:70) provided methyl (3S*,4R*)-4-hydroxy-3,5-diphenyl-3,4-dihydro-2H-pyrrole-4-carboxylate (9) (0.172 mmol, 50.8 mg, a single diastereomer) in 86% overall yield as a white solid.

Mp 160-163 °C; IR (NaCl) 3396, 3053, 1726, 1624, 1497, 1265, 1234, 1130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.48 (3H, s), 3.96 (1H, dd, J = 9.6, 8.0 Hz), 4.21 (1H, s), 4.40 (1H, dd, J = 15.6, 9.6 Hz), 4.48 (1H, dd, J = 15.6, 8.0 Hz), 7.26-7.36 (5H, m), 7.36-7.45 (3H, m), 7.83 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 170.4, 135.4, 132.3, 130.7, 128.5, 128.5, 127.8, 127.6, 90.4, 60.3, 57.7, 53.0. ESIHRMS: Found: m/z 296.1286. Calcld for C₁₈H₁₈NO₃: (M+H)⁺ 296.1287.

To a solution of 9 (0.1 mmol, 29.5 mg) in the mixed solvent of EtOH and AcOH (10:1, 1 mL) was added NaBH₃CN (0.15 mmol, 9.4 mg) at room temperature. The reaction mixture was stirred for 2 h at the same temperature and then quenched with saturated aqueous NaHCO₃. The
mixture was extracted three times with CH$_2$Cl$_2$. The combined organic layers were washed with brine and dried over MgSO$_4$. After filtration, the solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; ethyl acetate: hexane = 40:60) to give methyl (2S*,3R*,4S*)-3-hydroxy-2,4-diphenylpyrrolidine-3-carboxylate (10) (0.085 mmol, 25.4 mg) as a single diastereomer in 86% yield.

Colorless crystal (CCDC 1436815, the solved crystal structure was disordered in two positions and the X-ray figure shown above is one component for clarity); mp 108-110 °C; IR (NaCl) 3397, 2978, 2868, 1718, 1491, 1229, 1381, 1134, 1072 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 3.32 (3H, s), 3.71 (1H, dd, $J = 10.8, 9.6$ Hz), 3.82 (1H, $J = 10.8, 10.0$ Hz), 3.92 (1H, dd, $J = 10.0, 9.6$ Hz) 4.64 (1H, s), 7.22-7.32 (8H, m), 7.41 (2H, d, $J = 7.2$ Hz); 13C NMR (100 MHz, CDCl$_3$) δ 172.8, 137.8, 136.9, 128.3, 128.2, 127.7, 127.6, 127.3, 126.0, 88.4, 70.8, 55.4, 52.0, 48.1. ESIHRMS: Found: m/z 298.1443. Calcld for C$_{18}$H$_{20}$NO$_3$: (M+H)$^+$ 298.1443.

9. References

1H NMR spectrum of E-1d (400 MHz, CDCl$_3$)
13C NMR spectrum of E-1d (100 MHz, CDCl$_3$)
1H NMR spectrum of Z-1d (400 MHz, CDCl$_3$)

- 0.000 ppm
- 0.93 ppm
- 1.00 ppm
- 1.01 ppm
- 6.26 ppm
- 0.99 ppm

Chemical shifts (ppm): 0.0, 5.0, 10.0, 7.469, 7.452, 7.335, 7.324, 7.316, 7.308, 7.305, 7.299, 7.289, 7.278, 7.037, 7.018, 6.999, 6.747, 6.727, 6.153, 4.928, 1.618, 1.000.
13C NMR spectrum of **Z-1d** (100 MHz, CDCl$_3$)
\(^1\)H NMR spectrum of 3aa, single diastereomer (400 MHz, CDCl\(_3\))
13C NMR spectrum of 3aa, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ba, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ba, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ba, dr = 6:1 (400 MHz, CDCl3)
1H NMR spectrum of 3ca, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ca, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3da, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3da, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ea (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ea (100 MHz, CDCl$_3$)
1H NMR spectrum of 3fa, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3fa, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3fa, dr = 7:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 3ga, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ga, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3_{ga}, dr = 7:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 3ha, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ha, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ha', dr = 3:1, minor isomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ha, dr = 3:1, minor isomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ab, single diastereomer (400 MHz, CDCl₃)
13C NMR spectrum of 3ab, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ab, dr = 10:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 3ac, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ac, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ac, dr = 3:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 3ad, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ad, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ad, dr = 10:1 (400 MHz, CDCl$_3$)

<table>
<thead>
<tr>
<th>ppm (t1)</th>
<th>0.00</th>
<th>0.32</th>
<th>1.00</th>
<th>1.03</th>
<th>1.12</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{1}NO

^{2}NEtO

3ad, dr = 10:1
1H NMR spectrum of 3ae, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ae, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ae, dr = 4:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 3af, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3af, single diastereomer (100 MHz, CDCl$_3$)

![Chemical Structure of 3af]
1H NMR spectrum of 3af, dr = 4:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 3ag, single diastereomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ag, single diastereomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3ah, major isomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3ah, major isomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 3gh, major isomer (400 MHz, CDCl$_3$)
13C NMR spectrum of 3gh, major isomer (100 MHz, CDCl$_3$)
1H NMR spectrum of 4j, $E/Z = 1:1.4$ (400 MHz, CDCl$_3$)
13C NMR spectrum of 4j, $E/Z = 1:1.4$ (100 MHz, CDCl$_3$)

$E/Z = 1:1.4$
1H NMR spectrum of 4j', $E/Z = 2.5:1$ (400 MHz, CDCl$_3$)

E/Z = 2.5:1
13C NMR spectrum of $4j'$, $E/Z = 2.5:1$ (400 MHz, CDCl$_3$)

E/Z = 2.5:1
1H NMR spectrum of 5aa (400 MHz, CDCl$_3$)
13C NMR spectrum of 5aa (100 MHz, CDCl$_3$)
1H NMR spectrum of 5aa' (400 MHz, CDCl$_3$)
13C NMR spectrum of Saa' (100 MHz, CDC\(_3\))
1H NMR spectrum of 5aa (400 MHz, CDCl$_3$)
13C NMR spectrum of 5aa'' (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ab (400 MHz, CDCl₃)
13C NMR spectrum of 5ab (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ad (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ad (100 MHz, CDCl$_3$)
\(^1H \) NMR spectrum of 5ae (400 MHz, CDCl₃)
1C NMR spectrum of Sae (100 MHz, CDCl$_3$)
1H NMR spectrum of 5af (400 MHz, CDCl$_3$)

Ph
MeO_2C__CO_2Me

N

ppm (t1)

ppm (t2)
13C NMR spectrum of 5af (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ba (400 MHz, CDCl$_3$)

ppm (t1)

Ph

EtO$_2$C

CO$_2$Et

Me
13C NMR spectrum of 5ba (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ca (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ca (100 MHz, CDCl$_3$)
1H NMR spectrum of 5da (400 MHz, CDCl$_3$)
13C NMR spectrum of 5da (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ea (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ea (100 MHz, CDCl$_3$)
1H NMR spectrum of 5fa (400 MHz, CDCl$_3$)
13C NMR spectrum of 5fa (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ga (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ga (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ha (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ha (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ia (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ia (100 MHz, CDCl$_3$)
1H NMR spectrum of 5ja, $\text{dr} = 1.1:1$ (400 MHz, CDCl$_3$)
13C NMR spectrum of 5ja, dr = 1.1:1 (400 MHz, CDCl$_3$)
1H NMR spectrum of 6a (400 MHz, CDCl$_3$)

![NMR spectrum diagram]

Chemical shifts (ppm): 7.37, 7.36, 7.35, 7.34, 7.32, 7.31, 7.30, 7.29, 7.28, 7.27, 7.26, 7.25, 7.24, 7.23, 7.16, 7.14, 7.12, 7.10, 7.02, 7.00, 6.98, 6.68, 6.66, 5.15, 5.11, 4.89, 4.87, 4.86, 4.85, 4.73, 4.72, 4.71, 4.70, 4.69, 3.77, 3.75, 3.74, 3.73, 3.72, 3.71, 3.70, 3.69, 3.68, 3.67, 3.66, 3.65, 3.64, 3.63, 3.62, 3.61, 3.60, 3.59, 3.58, 3.57, 3.56, 3.55, 3.54, 3.53, 3.52, 3.51, 3.50, 3.49, 2.59, 2.58, 2.57, 2.56, 2.55, 2.54, 2.53, 2.52, 2.51, 2.50, 2.49.
13C NMR spectrum of 6a (100 MHz, CDCl₃)
1H NMR spectrum of 6e (400 MHz, CDCl$_3$)
13C NMR spectrum of 6e (100 MHz, CDCl$_3$)
1H NMR spectrum of 7 (400 MHz, CDCl$_3$)

Ph

N

Ph

ppm (t1)
13C NMR spectrum of 7 (100 MHz, CDCl$_3$)
1H NMR spectrum of 9 (400 MHz, CDCl$_3$)

![NMR spectrum image]
13C NMR spectrum of 9 (100 MHz, CDCl$_3$)
1H NMR spectrum of 10 (400 MHz, CDCl$_3$)
13C NMR spectrum of 10 (100 MHz, CDCl$_3$)