Electronic Supplementary Information (ESI)

Observance of a large conformational change associated with the rotation of the naphthyl groups during the photodimerization of criss-cross aligned C=C bonds within a 2D coordination polymer

Fei-Long Hu,a,b Shu-Long Wang,a Brendan F. Abrahamsc and Jian-Ping Lang*a

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

b College of Chemistry and Material, Yulin Normal University, Yulin 537000, P. R. China

c School of Chemistry, University of Melbourne, Victoria 3010, Australia.

Correspondence and requests for materials should be addressed to J.P.L. (email: jplang@suda.edu.cn)
Table of Contents

Experimental..S4

1. Preparation of 4-spy, (E)-4-(2-(naphthalen-2-yl)vinyl)pyridine 4-(2-npy) and (E)-4-(2-(naphthalen-1-yl)vinyl)pyridine (4-npy)

2. Computational method

Figure S1. The 1H NMR spectrum of 4-spy, 4-npy and 4-(2-npy). ...S4

Figure S2. The photos of 1, 1a (1 irradiated for 5h), 3 and 3a (3 irradiated for 5h). ..S6

Figure S3. The 1H NMR spectrum of 1. ..S6

Figure S4. The 1H NMR spectrum of 1a. ..S7

Figure S5. IR spectra of crystal samples of 1 and 1a (irradiated by UV light for 5h). ..S7

Figure S6. Perspective view showing the angle of 4-(2-npy) is 85.44º and the edge-to-face interaction.S8

Figure S7. The dihedral angle between the Py rings in 1 and 1a (top). The dihedral angle between the naphthalene molecules in 3 and 3a (bottom). ..S8

Figure S8. The 1H NMR spectrum of 3. ...S9

Figure S9. The 1H NMR spectrum of 3a. ..S9

Figure S10. IR spectra of crystal samples of 3 and 3a (irradiated by UV light for 5h). ...S10

Figure S11. Potential energy profile for the C3-C4-C5-C6 bond of npy calculated at the B3LYP/6-31G(d) level. ..S10

Figure S12. Potential energy profile for the C1-C2-C3-C4 bond of npy calculated at the B3LYP/6-31G(d) level. ..S11

Figure S13. Ratio of the irradiated products in 1. ...S11

Figure S14. Ratio of the irradiated products in 3. ...S12

Figure S15. Experimental (cyan (1) and black (one sample irradiated for 5h)) and simulated (red (1) and blue (1a)) PXRD patterns. ...S12

Figure S16. Experimental (black (2)) and simulated (red (2)) PXRD patterns. ...S13

Figure S17. Experimental (red (3) and cyan (one sample irradiated for 5h)) and simulated (black (3) and blue (3a)) PXRD patterns. ...S13
Figure S18. TG (green) and DSC (blue) curves of 1. .. S14

Figure S19. TG (green) and DSC (blue) curves of 1a. .. S14

Figure S20. TG (green) and DSC (blue) curves of 2. .. S15

Figure S21. TG (green) and DSC (blue) curves of 3. .. S15

Figure S22. TG (green) and DSC (blue) curves of 3a. .. S16

Figure S23. Solid state emission spectra of complexes 1, 1a, 3 and 3a. S16
Experimental

1. Preparation of 4-spy, (E)-4-(2-(naphthalen-2-yl)vinyl)pyridine 4-(2-npy) and (E)-4-(2-(naphthalen-1-yl)vinyl)pyridine (4-npy). Corresponding bromomethyl derivatives were treated with triphenylphosphine in toluene. The resulting product mixed with pyridylaldehyde in sodium hydrate solution and stirred for 20h. The crude product was obtained by evaporation of the solvents in vacuo. The mixture was loaded on a column filled with silica gel and eluted with ethyl acetate / mineral ether (2:1). 1H NMR (400MHz, DMSO, TMS): 4-spy, δ 8.56 (d, 2H, py-H), 7.6 (d, 2H, py-H), 8.57 (d, 2H, Ph-H) 7.56 (d, 1H, C=C), 7.3-7.4 (m, 5h, Ph-H), 7.28 (d, 1H, C=C). 4-(2-npy), δ 8.6 (d, 2H, py-H), 8.1 (s, 1H, naphthalene-H), 7.9 (m, 4H, naphthalene-H), 7.7(1H, C=C), 7.6(2H, py-H), 7.5(2H, naphthalene-H), 7.4(1H, C=C). 4-npy, δ 8.6 (d, 2H, py-H), 8.46 (d, 1H, naphthalene-H), 8.39 (d, 1H, C=C), 7.94 (m, 5h, naphthalene-H), 7.75 (dd, 2H, py-H), 7.59 (m, 5h, naphthalene-H), 7.32 (d, 1H, C=C) (Figures S1).

2. Computational method
Gas phase structure optimizations were carried out using DFT as implemented in the Gaussian 09 package with the B3LYP functional using 6-31G* basis sets.1

References
Figure S1. The 1H NMR spectrum of 4-spy, 4-npy and 4-(2-npy).
Figure S2. The photos of 1, 1a (1 irradiated for 5h), 3 and 3a (3 irradiated for 5h).

Figure S3. The 1H NMR spectrum of 1.
Figure S4. The 1H NMR spectrum of 1a.

Figure S5. IR spectra of crystal samples of 1 and 1a (irradiated by UV light for 5h).
Figure S6. Perspective view showing the angle of 4-(2-npy) is 85.44° and the edge-to-face interaction.

Figure S7. (top) The dihedral angle between the Py rings in 1 and 1a. (bottom) The dihedral angle between the naphthalene molecules in 3 and 3a.
Figure S8. The 1H NMR spectrum of 3.

Figure S9. The 1H NMR spectrum of 3a.
Figure S10. IR spectra of crystal samples of 3 and 3a (irradiated by UV light for 5h).

Figure S11. Potential energy profile for the C3-C4-C5-C6 bond of npy calculated at the B3LYP/6-31G(d) level.
Figure S12. Potential energy profile for the C1-C2-C3-C4 bond of npy calculated at the B3LYP/6-31G(d) level.

Figure S13. Ratio of the irradiated products in 1.
Figure S14. Ratio of the irradiated products in 3.

Figure S15. Experimental (cyan (1) and black (one sample irradiated for 5h)) and simulated (red (1) and blue (1a)) PXRD patterns.
Figure S16. Experimental (black (2)) and simulated (red (2)) PXRD patterns.

Figure S17. Experimental (red (3) and cyan (one sample irradiated for 5h)) and simulated (black (3) and blue (3a)) PXRD patterns.
Figure S18. TG (green) and DSC (blue) curves of 1.

Figure S19. TG (green) and DSC (blue) curves of 1a.
Figure S20. TG (green) and DSC (blue) curves of 2.

Figure S21. TG (green) and DSC (blue) curves of 3.
Figure S22. TG (green) and DSC (blue) curves of 3a.

Figure S23. Solid state emission spectra of complexes 1, 1a, 3 and 3a.