Formation of composite dimers consisting of Ag$_2$S and hollow structured Pd nanoparticles

Dong Chen, Hui Liu, Penglei Cui, Chengyin Li, Feng Ye and Jun Yang*

aState Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Fax: 86-10-8254 4915; Tel: 86-10-8254 4915; E-mail: jyang@ipe.ac.cn

bUniversity of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China 100049

Financial support from the 100 Talents Program of the Chinese Academy of Sciences and National Natural Science Foundation of China (No.: 21173226, 21376247, 21476246) is gratefully acknowledged.
Fig. S1 TEM images (a,c) and HRTEM images (b,d) of the as-prepared Ag seed particles in oleylamine in the presence of ionic liquid (a,b) and in the absence of ionic liquid (c,d).

Fig. S2 X-ray diffraction (XRD) patterns of Ag seed particles synthesized in oleylamine in the presence of ionic liquid (a), core-shell Ag@Ag-Pd nanoparticles by galvanic replacement reaction between as-prepared Ag seeds and Pd^{2+} precursors (b), and dimeric Ag_{2}S-hPd nanocomposites derived from core-shell Ag@Ag-Pd nanoparticles (c), in which the reference for monoclinic Ag_{2}S (JCPDS Card File 140072, blue columns) is displayed.
Fig. S3 UV-Visible spectra of colloidal solution of Ag seeds synthesized in oleylamine in the presence of ionic liquid (a), core-shell Ag@Ag-Pd nanoparticles by galvanic replacement reaction between as-prepared Ag seeds and Pd$^{2+}$ precursors (b), and core-shell Ag@Ag-Pd nanoparticles after element S treatment at 50$^\circ$C for 8 h (c).

Fig. S4 TEM image (a) and HRTEM image (b) of the Ag@Ag-Pd nanoparticles by galvanic replacement reaction between Ag seeds synthesized in the absence of ionic liquid and Pd$^{2+}$ precursors.
Fig. S5 Cyclic voltammograms for CO stripping on the core-shell Ag@Ag-Pd nanoparticles aging with element S for 8 h (a), 16 h (b), 24 h (c), and on the original core-shell Ag@Ag-Pd templates (d), respectively, in 0.1 M HClO₄ at scan rate of 50 mV s⁻¹. Black line: 1st scan; red line: 2nd scan.

Fig. S6 The 3d XPS spectra of Pd in commercial Pd/C-JM catalyst (a) and dimeric Ag₂S-hPd nanocomposites (b).
Fig. S7 Cyclic voltammograms for CO stripping on the commercial Pd/C-JM catalyst in 0.1 M HClO$_4$ at scan rate of 50 mV s$^{-1}$. Black line: 1st scan; red line: 2nd scan.

Table S1 Electrochemical measurements of formic acid oxidation on dimeric Ag$_2$S-hPd nanocomposites and commercial Pd/C-JM catalyst.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>FPP (V)</th>
<th>EPCD (mA cm$^{-2}$)</th>
<th>BPP (V)</th>
<th>BPCD (mA cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag$_2$S-hPd/C</td>
<td>0.31</td>
<td>1.54</td>
<td>0.48</td>
<td>1.73</td>
</tr>
<tr>
<td>Pd/C-JM</td>
<td>0.85</td>
<td>1.10</td>
<td>0.64</td>
<td>1.08</td>
</tr>
</tbody>
</table>

FPP: Forward peak potential; FPCD: Forward peak current density; BPP: Backward peak potential; BPCD: Backward peak current density. The data were obtained from Fig. 4a.