Electronic Supplementary Information

Fe$_2$O$_3$-TiO$_2$ nanosystems by an hybrid PE-CVD/ALD approach: controllable synthesis, growth mechanism, and photocatalytic properties

Davide Barreca, a Giorgio Carraro, b Michael E. A. Warwick, b Kimmo Kaunisto, b,c Alberto Gasparotto, b Valentina Gombac, d Cinzia Sada, e Stuart Turner, f Gustaaf Van Tendeloo, f Chiara Maccato, b Paolo Fornasiero *d

a CNR-ICI and INSTM, Department of Chemistry, Padova University, Padova, Italy.
b Department of Chemistry, Padova University and INSTM, 35131 Padova, Italy.
c Department of Chemistry and Bioengineering, Tampere University of Technology, 33101 Tampere, Finland.
d Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste Research Unit - INSTM Research Unit, Trieste University, 34127 Trieste, Italy.
e Department of Physics and Astronomy, Padova University, 35131 Padova, Italy.
f EMAT - University of Antwerp, 2020 Antwerpen, Belgium.

* Authors to whom correspondence should be addressed; e-mail: chiara.maccato@unipd.it (C.M.); pffornasiero@units.it (P.F.).
Fig. S1. XRD patterns of \(\text{Fe}_2\text{O}_3\)-TiO\(_2\) specimens. Reflections pertaining to the FTO substrate are marked by vertical black bars. The observed signals could mainly be indexed with those pertaining to the rhombohedral hematite (H) phase.\(^1\) For the higher titania thickness [sample \(\text{Fe}_2\text{O}_3\)-TiO\(_2\) (H)], some reflections related to anatase (A) TiO\(_2\)\(^2\) were also detected.
Fig. S2. Representative AFM micrographs for: (a) Fe$_2$O$_3$-TiO$_2$ (L); (b) Fe$_2$O$_3$-TiO$_2$ (H) samples. RMS values are close to 15 nm for both specimens.
Fig. S3. SIMS depth profiles for (a) Fe$_2$O$_3$-TiO$_2$ (L) and (b) Fe$_2$O$_3$-TiO$_2$ (H) samples.
References