Growth of High Quality Single Crystals of Strontium doped (Nd,Pr) nickelates, Nd$_{2-x}$Sr$_x$NiO$_{4+\delta}$ and Pr$_{2-x}$Sr$_x$NiO$_{4+\delta}$

O. Wahyudia,b,c,d,†, M. Cerettia*, I. Weillb,c, A. Coussone, F. Weillb,c, M. Mevenf, M. Guerrea, A. Villesuzanneb,c,g, J.-M. Bassatb,c, W. Paulusa

a Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-Université de Montpellier, Chimie et Cristallochimie des Matériaux, Place Eugène Bataillon, 34095 Montpellier, France
b CNRS, ICMCB, UPR 9048, F-33600 Pessac, France
c Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
d Sciences Chimiques de Rennes, Université de Rennes 1, France.
e Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, Gif sur Yvette, 91191 France
f Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München and RWTH Aachen University, Institut für Kristallographie, Outstation at MLZ, 85747 Garching, Germany
g IREET, University of Bolton, Bolton, BL3 5AB (UK)
†* Corresponding author: monica.ceretti@univ-montp2.fr
† Present address: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, P.R.China 200050

Figure S1: Characteristic XRD pattern of Pr$_3$NiO$_{4+\delta}$ after air heating at 1000°C evidencing the partially decomposition into Pr$_6$O$_{11}$ and Pr$_5$Ni$_3$O$_{10-x}$ (PANalytical X’Pert powder diffractometer (Cu K$_{\alpha1,\alpha2}$))
Figure S2: X-ray diffraction patterns of crushed as grown Pr$_{2.5}$Sr$_x$NiO$_{4+δ}$ single crystals. The upper diagram was obtained for $x=0.00$ (orthorhombic), the middle corresponds to $x=0.1$ while the bottom is for $x=0.5$ (tetrahedral). XRD measurements have been performed with a PANalytical X'Pert powder diffractometer (Cu $K_{α1,2}$)
Figure S3: XRD of the as grown undoped Nd$_2$NiO$_{4+\delta}$ single crystal, before (a) and after (b) annealing at 430°C. (Diffractometer BRUKER D8, Cu K$_{\alpha1}$). The same behaviour has been observed for the doped Nd$_{2-x}$Sr$_x$NiO$_{4+\delta}$ (with $x=0.1$ and $x=0.5$) single crystals. The XRD diffraction pattern in the upper part clearly shows the presence of two phases with the same symmetry but different lattice parameters, due to the presence of a shoulder at lower two-theta angles of the (200) and (020) reflections, but also for the (113). This means that the two phases are different in the oxygen content, which has a direct consequence on the lattice parameters.
Figure S4: Upper part: atomic percentage of neodymium and nickel, as well as the Nd/Ni ratio (around 2), distribution over a cross section of the as grown NNO single crystal. The bottom part shows the results obtained on PNO single crystal.