Supporting Information

‘Honeycomb’ nanotube assembly based on thiacalix[4]arene derivatives by weak interactions

Wei Wang*, Weiping Yanga,b, Rong Guoa and Shuling Gonga,*

a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China

b Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, No. 2, Fengyang Street, High-Tech Zone, 450001 Zhengzhou, China

*Corresponding Author: E-mail: gongsl@whu.edu.cn; Fax: +86 27 68754067; Tel: +86 27 68752701.
Contents

Suppporting figure

Figure S1 The intermolecular C-H···S and S···π interactions in crystals of 2.
Figure S2 Space filling view of the triply helical nanotube motif of five compounds.
Figure S3 The C-H···O interactions found in the packing between neighbouring hexameric discs of 7·CHCl₃.
Figure S4 The intermolecular C-H···O, C-H···π and S···π interactions in crystals of 8.
Figure S5 The intermolecular C-H···O, C-H···π and S···π interactions in crystals of 9a and 9b and the C-H···O interactions observed in neighbouring nanotubes of 9b.
Figure S6 Schematic of the structure of 10 and non-covalent interactions found in crystals of 10·H₂O.
Figure S7 The intermolecular C-H···O, C-H···π and S···π interactions in crystals of 11.
Figure S8 Schematic representations of Type I, Type II, and X₃ synthon halogen···halogen contacts.
Figure S9 The intermolecular C-H···O, C-H···π, and S···π interactions in crystals of 12·CHCl₃.
Figure S10 ¹H NMR and ESI – MS of compound 7.
Figure S11 ¹H NMR and ESI – MS of compound 12.
Supporting table

Table S1 Dihedral angles of aromatic rings and reference molecular plane R of the seven compounds.

Table S2 Dihedral angles of the opposite aromatic rings of the seven compounds

Table S3 S⋯π interactions for six compounds

Table S4 π⋯π interactions for five compounds

Table S5 C-H⋯π interactions for six compounds

Table S6 O⋯π interactions in compounds 9, 10-H₂O and 11

Table S7 Hydrogen bonds of compound 7-CHCl₃

Table S8 Hydrogen bonds of compound 8

Table S9 Hydrogen bonds of compound 9

Table S10 Hydrogen bonds of compound 10-H₂O

Table S11 Hydrogen bonds of compound 11

Table S12 Hydrogen bonds of compound 12-CHCl₃

Table S13 The Cl⋯Cl interactions of compound 12-CHCl₃

Table S14 The cyano⋯Cl interactions of compound 12-CHCl₃

Table S15 The Cl⋯π interactions of compound 12-CHCl₃

Table S16 Sums of the van der Waals radii (vdW) of phenyl ring with common lp-containing atoms (atom LP).

Table S17 The partial site occupation factors of four compounds.
Figure S1 The intermolecular C–H···S and S···π interactions in crystals of 2. C–H···S and S···π interactions are aqua and gray dot lines, respectively. Hydrogen atoms (except for those involved in hydrogen bonding) are omitted for clarity.

<table>
<thead>
<tr>
<th>Atoms involved D−H···A</th>
<th>Symmetry</th>
<th>H···A</th>
<th>D···A</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(22)−H(221)···S(8)</td>
<td>x, y, z+1</td>
<td>3.02(4)</td>
<td>3.795(3)</td>
<td>139(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Type</th>
<th>S···Cg</th>
<th>Symmetry</th>
<th>r/Å</th>
<th>d/Å</th>
<th>α/α’(°)</th>
<th>φ(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>III</td>
<td>S(2)···Cg(2)</td>
<td>1/3+x-y, 1/3+x, 2/3-z</td>
<td>4.194</td>
<td>3.463</td>
<td>177.33/74.41</td>
<td>49.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(2)···Cg(3)</td>
<td>1/3+x-y, 1/3+x, 5/3-z</td>
<td>4.104</td>
<td>3.650</td>
<td>72.62/157.94</td>
<td>59.95</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>S(14)···Cg(1)</td>
<td>1/3+y, 2/3-x+y, 2/3-z</td>
<td>4.250</td>
<td>3.727</td>
<td>75.15/156.22</td>
<td>58.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(14)···Cg(4)</td>
<td>1/3+y, 2/3-x+y, 5/3-z</td>
<td>4.241</td>
<td>3.546</td>
<td>172.37/69.70</td>
<td>51.49</td>
</tr>
</tbody>
</table>

The parameter values of \(r, d, \alpha, \alpha' \), and \(\phi \) lie in the allowable range of S···π interactions.\(^{31}\)

Reference

Figure S2
Space filling view of the triply helical nanotube motif are found in the crystal structure of five compounds. Side view showing helical nature of strands coloured yellow, red and blue. Other molecular components omitted for clarity.
Figure S3 The C-H⋯O interactions are found in the packing between neighbouring hexameric discs of $7\cdot\text{CHCl}_3$. The green dotted lines represent C-H⋯O interactions. Hydrogen atoms (except for those involved in hydrogen bonding) and CHCl$_3$ molecules not involved in omitted for clarity.
Figure S4 View along the crystallographic b axis, the intermolecular C-H···O, C-H···π and S···π interactions are green, violet and gray dot lines, respectively, observed in the triply helical nanotubes of 8. Hydrogen atoms (except for those involved in hydrogen bonding) are omitted for clarity.
Figure S5

(A) View along the crystallographic b axis, the intermolecular C-H···O, C-H···π and S···π interactions are green, violet and gray dot lines, respectively, observed in the triply helical nanotubes of 9a and 9b.

(B) The C-H···O interactions observed in neighbouring nanotubes of 9b. C-H···O interactions shown as dashed green lines.

Hydrogen atoms (except for those involved in hydrogen bonding) are omitted for clarity.
Figure S6

(A) Schematic of the structure of 10.

(B) The S···π interactions and π···π interactions observed in hexameric disc.

(C) Non-covalent interactions the same layer neighbouring hexameric of 10·H₂O observed in 2D network.

(D) The different layer neighbouring hexameric of 10·H₂O observed in 3D network.

(E) Non-covalent interactions the adjacent layer neighbouring hexameric of 10·H₂O observed in 3D network.

C-H···O interactions, C-H···π interactions, and S···π interactions are green, violet and gray dot lines, respectively. Hydrogen atoms (except for those involved in hydrogen bonding) and H₂O are omitted for clarity.
Figure S7 View along the crystallographic b axis, the intermolecular C-H···O and S···π interactions are green and gray dot lines, respectively, observed in the triply helical nanotubes of 11. Hydrogen atoms (except for those involved in hydrogen bonding) are omitted for clarity.
Figure S8 Schematic representations of Type I, Type II, and X_3 synthon halogen···halogen contacts. The angles: Type I ($\theta_1=\theta_2=140–180^\circ$) and Type II ($\theta_1=150–180^\circ$, $\theta_2=90–120^\circ$). The X_3 synthon is a trigonal array of halogen atoms with attractive electrophile-nucleophile Type II contacts.
Figure S9

(A) The intermolecular S···π interactions are gray dot lines observed in the triply helical nanotubes of 12-CHCl₃.
(B) Structure of 12-CHCl₃ showing hexameric discs through the C-H···π interactions. C-H···π interactions shown as dashed orange lines.
Figure S10 1HNMR and ESI – MS of compound 7
Figure S11 1HNMR and ESI – MS of compound 12
<table>
<thead>
<tr>
<th>Compound</th>
<th>Plane AR (°)</th>
<th>Plane BR (°)</th>
<th>Plane CR (°)</th>
<th>Plane DR (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70.34</td>
<td>35.71</td>
<td>71.19</td>
<td>30.57</td>
</tr>
<tr>
<td>7-CHCl₃</td>
<td>71.09(68.14)</td>
<td>33.52(30.60)</td>
<td>73.51(76.51)</td>
<td>37.89(38.77)</td>
</tr>
<tr>
<td>8</td>
<td>77.15</td>
<td>32.69</td>
<td>65.91</td>
<td>44.37</td>
</tr>
<tr>
<td>9</td>
<td>75.11</td>
<td>43.26</td>
<td>69.95</td>
<td>38.63</td>
</tr>
<tr>
<td>10-H₂O</td>
<td>110.16</td>
<td>20.73</td>
<td>109.25</td>
<td>28.42</td>
</tr>
<tr>
<td>11</td>
<td>78.60(80.25)</td>
<td>89.92(89.43)</td>
<td>73.46(70.94)</td>
<td>43.25(35.64)</td>
</tr>
<tr>
<td>12-CHCl₃</td>
<td>68.73</td>
<td>43.97</td>
<td>68.73</td>
<td>43.97</td>
</tr>
</tbody>
</table>

()) represents the disordered molecular

<table>
<thead>
<tr>
<th>Compound</th>
<th>Plane AC (°)</th>
<th>Plane BD (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>38.48</td>
<td>113.72</td>
</tr>
<tr>
<td>7-CHCl₃</td>
<td>35.40</td>
<td>109.6(110.63)</td>
</tr>
<tr>
<td>8</td>
<td>36.96</td>
<td>102.97</td>
</tr>
<tr>
<td>9</td>
<td>34.97</td>
<td>98.10</td>
</tr>
<tr>
<td>10-H₂O</td>
<td>39.42</td>
<td>130.59</td>
</tr>
<tr>
<td>11</td>
<td>27.98(29.39)</td>
<td>46.84(52.80)</td>
</tr>
<tr>
<td>12-CHCl₃</td>
<td>42.54</td>
<td>92.06</td>
</tr>
</tbody>
</table>

()) represents the disordered molecular
Table S3 The three types of S···π interactions in compounds 7-12 and their metric parameters

<table>
<thead>
<tr>
<th>Compound</th>
<th>Type</th>
<th>S···Cg</th>
<th>Symmetry</th>
<th>r / Å</th>
<th>d / Å</th>
<th>α / α’ (°)</th>
<th>φ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7·CHCl₃</td>
<td>III</td>
<td>S(2)···Cg(1) (1/3+x-y, -1/3+x, 2/3-z)</td>
<td>4.357</td>
<td>C(6)</td>
<td>3.820</td>
<td>74.72/154.99</td>
<td>58.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(2)···Cg(4) (1/3+x-y, -1/3+x, 5/3-z)</td>
<td>4.150</td>
<td>C(30)</td>
<td>3.599</td>
<td>168.48/71.26</td>
<td>57.52</td>
</tr>
<tr>
<td>8</td>
<td>III</td>
<td>S(2)···Cg(3) (1+y, 1-x+y, 2-z)</td>
<td>4.495</td>
<td>C(21)</td>
<td>3.701</td>
<td>165.26/61.41</td>
<td>47.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(2)···Cg(4) (1+y, 1-x+y, 1-z)</td>
<td>4.216</td>
<td>C(26)</td>
<td>3.675</td>
<td>77.09/163.53</td>
<td>58.16</td>
</tr>
<tr>
<td>9</td>
<td>III</td>
<td>S(1)···Cg(3) (1/3+y, 2/3-x+y, -1/3-z)</td>
<td>4.152</td>
<td>C(20)</td>
<td>3.739</td>
<td>175.33/74.07</td>
<td>63.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(1)···Cg(4) (1/3+y, 2/3-x+y, 2/3-z)</td>
<td>4.149</td>
<td>C(28)</td>
<td>3.684</td>
<td>69.63/159.33</td>
<td>59.29</td>
</tr>
<tr>
<td>10·H₂O</td>
<td>II</td>
<td>S(1)···Cg(1) (1-x, -y, -z)</td>
<td>4.753</td>
<td>C(5)</td>
<td>3.775</td>
<td>118.0/83.91</td>
<td>38.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(2)···Cg(6) (4/3+x-y, -2/3-x, -1/3+z)</td>
<td>4.254</td>
<td>C(36)</td>
<td>3.588</td>
<td>102.66/87.08</td>
<td>49.43</td>
</tr>
<tr>
<td>11</td>
<td>II</td>
<td>S(1)···Cg(3) (1+y, 1-x+y, 1-z)</td>
<td>4.106</td>
<td>C(16)</td>
<td>3.664</td>
<td>58.79/135.44</td>
<td>62.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(3)···Cg(4) (1+y, 1-x+y, -z)</td>
<td>4.082</td>
<td>C(22)</td>
<td>3.661</td>
<td>62.1/134.74</td>
<td>61.71</td>
</tr>
<tr>
<td>12·CHCl₃</td>
<td>III</td>
<td>S(2)···Cg(1) (-x+y, y, 1/2+z)</td>
<td>3.620</td>
<td>C(5)</td>
<td>3.394</td>
<td>129.52/104.0</td>
<td>69.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(4)···Cg(2) (x, y, 1+z)</td>
<td>4.260</td>
<td>C(10)</td>
<td>3.376</td>
<td>111.79/124.14</td>
<td>42.87</td>
</tr>
</tbody>
</table>
Table S4 \(\pi \cdots \pi \) interactions for five compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cg(I)···Cg(J)</th>
<th>Symmetry</th>
<th>(\alpha)</th>
<th>Cg···Cg</th>
<th>Cg(I)_Perp</th>
<th>Cg(J)_Perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>7∙CHCl₃</td>
<td>Cg(1)···Cg(1)</td>
<td>1-x,-y,1-z</td>
<td>0</td>
<td>4.050(3)</td>
<td>3.446(2)</td>
<td>3.447(2)</td>
</tr>
<tr>
<td>8</td>
<td>Cg(4)···Cg(4)</td>
<td>-x+5/3,-y+1/3,-z+4/3</td>
<td>0</td>
<td>4.047(2)</td>
<td>3.468(1)</td>
<td>3.468(1)</td>
</tr>
<tr>
<td>9</td>
<td>Cg(2)···Cg(2)</td>
<td>-x+1,-y,-z</td>
<td>0</td>
<td>4.708(3)</td>
<td>3.431(2)</td>
<td>3.431(2)</td>
</tr>
<tr>
<td>10∙H₂O</td>
<td>Cg(3)···Cg(4)</td>
<td>1+y,1-x-y,-z</td>
<td>0</td>
<td>3.725(3)</td>
<td>28.216(5)</td>
<td>3.513(2)</td>
</tr>
<tr>
<td></td>
<td>Cg(5)···Cg(5)</td>
<td>5/3-x,1/3-y,1/3-z</td>
<td>0</td>
<td>4.801(5)</td>
<td>-3.323(3)</td>
<td>-3.323(3)</td>
</tr>
<tr>
<td>11</td>
<td>Cg(4)···Cg(4)</td>
<td>-x+4/3,-y+5/3,-z+5/3</td>
<td>0</td>
<td>4.300(4)</td>
<td>-3.509(2)</td>
<td>-3.509(2)</td>
</tr>
</tbody>
</table>

Table S5 C-H···\(\pi \) interactions for six compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Atoms involved C-H···Cg</th>
<th>Symmetry</th>
<th>H···Cg</th>
<th>C···Cg</th>
<th>(\angle)C-H···Cg</th>
</tr>
</thead>
<tbody>
<tr>
<td>7∙CHCl₃</td>
<td>C(3) - H(3)···Cg(2)</td>
<td>1-x, -y, 1-z</td>
<td>3.183</td>
<td>4.064(4)</td>
<td>154.8</td>
</tr>
<tr>
<td></td>
<td>C(4) - H(4A)···Cg(3)</td>
<td>1-x, -y, 1-z</td>
<td>3.179</td>
<td>3.818(4)</td>
<td>126.1</td>
</tr>
<tr>
<td></td>
<td>C(5) - H(5)···Cg(4)</td>
<td>1-x, -y, 1-z</td>
<td>3.123</td>
<td>4.007(1)</td>
<td>155.8</td>
</tr>
<tr>
<td></td>
<td>C(7) - H(7A)···Cg(2)</td>
<td>1/3+y, 2/3-x+y, 2/3-z</td>
<td>2.77</td>
<td>3.520(7)</td>
<td>132.6</td>
</tr>
<tr>
<td></td>
<td>C(23) - H(23A)···Cg(4)</td>
<td>1/3-x-y, -1/3+x, 5/3-z</td>
<td>2.93</td>
<td>3.790(10)</td>
<td>136.1</td>
</tr>
<tr>
<td></td>
<td>C(23) - H(23A)···Cg(5)</td>
<td>1/3+x-y, -1/3+x, 5/3-z</td>
<td>2.93</td>
<td>3.43(3)</td>
<td>134.0</td>
</tr>
<tr>
<td></td>
<td>C(13) - H(13)···Cg(1)</td>
<td>1/3+y, 2/3-x+y, 2/3-z</td>
<td>3.138</td>
<td>3.603(4)</td>
<td>112.0</td>
</tr>
<tr>
<td></td>
<td>C(30) - H(30)···Cg(1)</td>
<td>x-y, x-1, -z+1</td>
<td>2.66</td>
<td>3.438(4)</td>
<td>136.0</td>
</tr>
<tr>
<td>8</td>
<td>C(15') - H(15B)···Cg(3)</td>
<td>1/3+y, 2/3-x+y, -1/3-z</td>
<td>2.96</td>
<td>3.89(3)</td>
<td>161.0</td>
</tr>
<tr>
<td></td>
<td>C(32') - H(32A)···Cg(1)</td>
<td>1/3+x-y, -1/3+x, 2/3-z</td>
<td>2.92</td>
<td>3.77(5)</td>
<td>147.0</td>
</tr>
<tr>
<td></td>
<td>C(15) - H(15C)···Cg(3)</td>
<td>1/3+y, 2/3-x+y, -1/3-z</td>
<td>2.90</td>
<td>3.64(2)</td>
<td>134.0</td>
</tr>
<tr>
<td></td>
<td>C(32) - H(32C)···Cg(1)</td>
<td>1/3+x-y, -1/3+x, 2/3-z</td>
<td>2.96</td>
<td>3.61(2)</td>
<td>126.0</td>
</tr>
<tr>
<td>10∙H₂O</td>
<td>C(38) - H(38)···Cg(1)</td>
<td>1-x, -y, 1-z</td>
<td>3.113</td>
<td>4.041(5)</td>
<td>175.9</td>
</tr>
<tr>
<td>11</td>
<td>C(24) - H(24)···Cg(1)</td>
<td>-x+4/3,-y+5/3,-z+5/3</td>
<td>2.65</td>
<td>3.476(9)</td>
<td>148.0</td>
</tr>
<tr>
<td></td>
<td>C(25) - H(25)···Cg(2)</td>
<td>-x+4/3,-y+5/3,-z+5/3</td>
<td>2.90</td>
<td>3.442(6)</td>
<td>118.0</td>
</tr>
<tr>
<td></td>
<td>C(25') - H(25')···Cg(2)</td>
<td>-x+4/3,-y+5/3,-z+5/3</td>
<td>2.80</td>
<td>3.526(12)</td>
<td>136.0</td>
</tr>
<tr>
<td>12∙CHCl₃</td>
<td>C(13) - H(13B)···Cg(2)</td>
<td>-x+ y, y, -1/2+z</td>
<td>2.84</td>
<td>3.682(6)</td>
<td>146.6</td>
</tr>
</tbody>
</table>
Table S6 O···π interactions in compounds 9, 10-H$_2$O and 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>C–O (C=O)···Cg</th>
<th>Symmetry</th>
<th>r/ Å</th>
<th>d/ Å</th>
<th>α(°)</th>
<th>φ(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>C(14) - O(4)···Cg(2)</td>
<td>1-x, -y, -z</td>
<td>3.469(14)</td>
<td>C(12)</td>
<td>3.469</td>
<td>80.1</td>
</tr>
<tr>
<td></td>
<td>C(14) - O(4)···Cg(3)</td>
<td>1-x, -y, -z</td>
<td>3.443(13)</td>
<td>C(23)</td>
<td>2.972</td>
<td>154.6</td>
</tr>
<tr>
<td></td>
<td>C(14) - O(4)···Cg(4)</td>
<td>1-x, -y, -z</td>
<td>3.213(15)</td>
<td>C(25) - C(26)</td>
<td>3.147</td>
<td>102.0</td>
</tr>
<tr>
<td></td>
<td>C(14) - O(4A)···Cg(1)</td>
<td>1-x, -y, -z</td>
<td>3.121(19)</td>
<td>C(6)</td>
<td>2.821</td>
<td>155.7</td>
</tr>
<tr>
<td></td>
<td>C(14) - O(4A)···Cg(2)</td>
<td>1-x, -y, -z</td>
<td>3.558(19)</td>
<td>C(8)</td>
<td>3.441</td>
<td>75.40</td>
</tr>
<tr>
<td>10-H$_2$O</td>
<td>C(40) - O(8)···Cg(1)</td>
<td>1-x, -y, -z</td>
<td>3.24(2)</td>
<td>C(28) - C(29)</td>
<td>3.175</td>
<td>100.15</td>
</tr>
<tr>
<td>11</td>
<td>C(13) - O(3)···Cg(3)</td>
<td>y, 1-x+y, 1-z</td>
<td>3.598(2)</td>
<td>C(17) - C(18)</td>
<td>3.197</td>
<td>84.55</td>
</tr>
<tr>
<td>Atoms involved D-H···A</td>
<td>Symmetry</td>
<td>H···A</td>
<td>D···A</td>
<td><(DHA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24) - H(24A)···Cl(1)</td>
<td></td>
<td>2.86(5)</td>
<td>3.76(3)</td>
<td>134(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25) - H(25B)···Cl(2)</td>
<td></td>
<td>2.99(9)</td>
<td>4.053(9)</td>
<td>167(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7) - H(7B)···S(1)</td>
<td></td>
<td>3.02(5)</td>
<td>3.520(5)</td>
<td>112(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31) - H(31)···S(1)</td>
<td>x, y, 1+z</td>
<td>2.97(5)</td>
<td>3.757(5)</td>
<td>141(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31') - H(31)···S(1)</td>
<td>x, y, 1+z</td>
<td>2.97(5)</td>
<td>3.757(5)</td>
<td>119(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23) - H(23A)···S(2)</td>
<td></td>
<td>3.03(5)</td>
<td>3.572(6)</td>
<td>116(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7) - H(7B)···S(2)</td>
<td>y+1/3, -x+y+2/3, -z+2/3</td>
<td>3.02(6)</td>
<td>3.890(4)</td>
<td>146(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23) - H(23B)···S(3)</td>
<td></td>
<td>2.83(10)</td>
<td>3.569(7)</td>
<td>140(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23) - H(23B)···S(3')</td>
<td></td>
<td>2.18(11)</td>
<td>2.92(4)</td>
<td>138(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20) - H(20)···O(5)</td>
<td>x, y, 1+z</td>
<td>2.64(7)</td>
<td>3.263(6)</td>
<td>127(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21) - H(21)···O(5)</td>
<td>4/3-x+y, 2/3-x, 2/3+z</td>
<td>2.47(5)</td>
<td>3.128(5)</td>
<td>121(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22) - H(22)···O(5)</td>
<td>4/3-x+y, 2/3-x, 2/3+z</td>
<td>2.60(4)</td>
<td>3.046(5)</td>
<td>106(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2) - H(2)···S(1)</td>
<td></td>
<td>2.68(8)</td>
<td>3.077(3)</td>
<td>114(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4) - H(4)···S(3)</td>
<td></td>
<td>2.43(13)</td>
<td>3.071(6)</td>
<td>114(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4') - H(4)···S(3')</td>
<td></td>
<td>1.96(14)</td>
<td>2.794(10)</td>
<td>127(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4') - H(4)···S(3')</td>
<td></td>
<td>2.43(13)</td>
<td>3.38(13)</td>
<td>140(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2) - H(2)···O(1)</td>
<td></td>
<td>2.01(10)</td>
<td>2.758(4)</td>
<td>167(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4) - H(4)···O(3)</td>
<td></td>
<td>1.81(14)</td>
<td>2.834(10)</td>
<td>147(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4') - H(4)···O(3)</td>
<td></td>
<td>1.81(14)</td>
<td>2.67(4)</td>
<td>128(11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S8 Hydrogen bonds of compound 8

<table>
<thead>
<tr>
<th>Atoms involved D-H···A</th>
<th>Symmetry</th>
<th>H···A</th>
<th>D···A</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(30) - H(30B)···S(2)</td>
<td>x-y, x-1, -z+1</td>
<td>3.05(3)</td>
<td>3.845(4)</td>
<td>138.8(6)</td>
</tr>
<tr>
<td>C(30) - H(30A)···S(4)</td>
<td></td>
<td>2.95(1)</td>
<td>3.453(4)</td>
<td>112.5(3)</td>
</tr>
<tr>
<td>C(12) - H(12)···O(2)</td>
<td>4/3-y, x-y-1/3, z+2/3</td>
<td>2.59(3)</td>
<td>3.388(4)</td>
<td>141.4(1)</td>
</tr>
<tr>
<td>C(13) - H(13)···O(2)</td>
<td>-x+y+5/3, -x+4/3, z+1/3</td>
<td>2.46(6)</td>
<td>3.266(4)</td>
<td>142.5(2)</td>
</tr>
<tr>
<td>C(29) - H(29)···O(2)</td>
<td>x-y, x-1, -z+1</td>
<td>2.87(1)</td>
<td>3.269(4)</td>
<td>106.4(2)</td>
</tr>
<tr>
<td>C(6) - H(6)···O(5)</td>
<td>-x+5/3, -y+1/3, -z+4/3</td>
<td>2.87(2)</td>
<td>3.399(4)</td>
<td>156.3(2)</td>
</tr>
<tr>
<td>C(7) - H(7)···O(5)</td>
<td>-x+5/3, -y+1/3, -z+4/3</td>
<td>2.58(3)</td>
<td>3.444(5)</td>
<td>150.8(1)</td>
</tr>
<tr>
<td>C(11) - H(11)···O(5)</td>
<td>-x+5/3, -y+1/3, -z+7/3</td>
<td>2.39(3)</td>
<td>3.176(4)</td>
<td>139.4(2)</td>
</tr>
<tr>
<td>O(1) - H(1A)···S(2)</td>
<td></td>
<td>2.64(3)</td>
<td>3.058(2)</td>
<td>114(3)</td>
</tr>
<tr>
<td>O(1B) - H(1B)···S(4)</td>
<td></td>
<td>2.61(3)</td>
<td>3.098(2)</td>
<td>120(3)</td>
</tr>
<tr>
<td>O(1) - H(1A)···O(3)</td>
<td></td>
<td>2.01(2)</td>
<td>2.781(3)</td>
<td>162(4)</td>
</tr>
<tr>
<td>O(4) - H(4A)···S4</td>
<td></td>
<td>1.93(2)</td>
<td>2.707(3)</td>
<td>157(3)</td>
</tr>
</tbody>
</table>
Table S9 Hydrogen bonds of compound 9

<table>
<thead>
<tr>
<th>Atoms involved D-H···A</th>
<th>Symmetry</th>
<th>H···A</th>
<th>D···A</th>
<th>(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(15) - H(15C)···S(1)</td>
<td></td>
<td>2.71(13)</td>
<td>3.25(6)</td>
<td>119(8)</td>
</tr>
<tr>
<td>C(15') - H(15C)···S(1)</td>
<td></td>
<td>2.71(13)</td>
<td>3.58(4)</td>
<td>134(8)</td>
</tr>
<tr>
<td>C(2) - H(2)···S(2)</td>
<td>x, y, z+1</td>
<td>3.09(7)</td>
<td>3.909(5)</td>
<td>139(5)</td>
</tr>
<tr>
<td>C(15') - H(15D)···S(2)</td>
<td></td>
<td>3.03(7)</td>
<td>3.52(2)</td>
<td>117(5)</td>
</tr>
<tr>
<td>C(15) - H(15D)···S(3)</td>
<td>y+1/3, -x+y+2/3, -z-1/3</td>
<td>3.00(10)</td>
<td>4.05(5)</td>
<td>152(3)</td>
</tr>
<tr>
<td>C(15') - H(15D)···S(3)</td>
<td>y+1/3, -x+y+2/3, -z-1/3</td>
<td>3.00(10)</td>
<td>3.90(2)</td>
<td>162(5)</td>
</tr>
<tr>
<td>C(32) - H(32C)···S(3)</td>
<td></td>
<td>2.90(15)</td>
<td>3.51(2)</td>
<td>117(11)</td>
</tr>
<tr>
<td>C(32) - H(32D)···S(4)</td>
<td></td>
<td>3.01(10)</td>
<td>3.57(3)</td>
<td>112(8)</td>
</tr>
<tr>
<td>C(19) - H(19)···O(2)</td>
<td>-x+1, -y, -z</td>
<td>2.54(7)</td>
<td>3.421(9)</td>
<td>150(4)</td>
</tr>
<tr>
<td>C(24) - H(24)···O(2)</td>
<td>-x+1, -y, -z</td>
<td>2.79(15)</td>
<td>3.464(13)</td>
<td>133(12)</td>
</tr>
<tr>
<td>C(26) - H(26)···O(2)</td>
<td>x-y+1/3, x-1/3, -z+2/3</td>
<td>2.99(4)</td>
<td>3.462(8)</td>
<td>108(3)</td>
</tr>
<tr>
<td>C(28) - H(28)···O(2)</td>
<td>-x+1, -y, -z+1</td>
<td>2.49(8)</td>
<td>3.302(9)</td>
<td>161(5)</td>
</tr>
<tr>
<td>C(11) - H(11)···O(2')</td>
<td>x, y, z+1</td>
<td>2.61(7)</td>
<td>3.30(2)</td>
<td>130(5)</td>
</tr>
<tr>
<td>C(28) - H(28)···O(2')</td>
<td>-x+1, -y, -z+1</td>
<td>2.95(7)</td>
<td>3.53(4)</td>
<td>128(4)</td>
</tr>
<tr>
<td>C(21) - H(21)···O(4B)</td>
<td>-x+y+4/3, -x+2/3, -z-1/3</td>
<td>2.92(6)</td>
<td>3.65(3)</td>
<td>134(3)</td>
</tr>
<tr>
<td>C(26) - H(26)···O(4B)</td>
<td>-x+y+4/3, -x+2/3, -z-1/3</td>
<td>2.09(6)</td>
<td>3.11(2)</td>
<td>164(4)</td>
</tr>
<tr>
<td>C(26) - H(26)···O(6)</td>
<td>-y+2/3, x-y-2/3, z+1/3</td>
<td>2.74(5)</td>
<td>3.452(9)</td>
<td>126(3)</td>
</tr>
<tr>
<td>O(1) - H(1')···S(1)</td>
<td></td>
<td>2.50(17)</td>
<td>3.014(7)</td>
<td>119(7)</td>
</tr>
<tr>
<td>O(5) - H(5)···S(3)</td>
<td></td>
<td>2.6(2)</td>
<td>2.982(5)</td>
<td>125(12)</td>
</tr>
<tr>
<td>O(5) - H(5)···S(4)</td>
<td></td>
<td>2.42(11)</td>
<td>2.993(10)</td>
<td>117(7)</td>
</tr>
<tr>
<td>O(1) - H(1')···O(3)</td>
<td></td>
<td>2.24(16)</td>
<td>2.893(9)</td>
<td>151(7)</td>
</tr>
<tr>
<td>O(1) - H(1')···O(7)</td>
<td></td>
<td>2.04(13)</td>
<td>2.922(7)</td>
<td>148(8)</td>
</tr>
<tr>
<td>O(5) - H(5)···O(7)</td>
<td></td>
<td>2.3(2)</td>
<td>2.942(7)</td>
<td>149(12)</td>
</tr>
</tbody>
</table>
Table S10 Hydrogen bonds of compound 10·H₂O

<table>
<thead>
<tr>
<th>Atoms involved D-H···A</th>
<th>Symmetry</th>
<th>H···A</th>
<th>D···A</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(11) - H(11)···O(1)</td>
<td>1-y, x-y, z</td>
<td>2.852(3)</td>
<td>3.693(8)</td>
<td>151.2(3)</td>
</tr>
<tr>
<td>C(36) - H(36)···O(8)</td>
<td>y+2/3, -x+y+1/3, -z+1/3</td>
<td>2.735(1)</td>
<td>3.657(6)</td>
<td>170.0(3)</td>
</tr>
<tr>
<td>O(7) - H(7)···S(1)</td>
<td></td>
<td>2.51(6)</td>
<td>3.034(3)</td>
<td>122.8(4)</td>
</tr>
<tr>
<td>O(3) - H(3)···S(3)</td>
<td></td>
<td>2.644(4)</td>
<td>3.080(3)</td>
<td>114.9(3)</td>
</tr>
<tr>
<td>O(7) - H(7)···O(2)</td>
<td></td>
<td>2.04(5)</td>
<td>2.725(4)</td>
<td>140.9(2)</td>
</tr>
<tr>
<td>O(3) - H(3)···O(6)</td>
<td></td>
<td>1.92(1)</td>
<td>2.663(4)</td>
<td>150.7(5)</td>
</tr>
</tbody>
</table>

Table S11 Hydrogen bonds of compound 11

<table>
<thead>
<tr>
<th>Atoms involved D-H···A</th>
<th>Symmetry</th>
<th>H···A</th>
<th>D···A</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(28) - H(28B)···S(2)</td>
<td>x, y, z+1</td>
<td>3.06(5)</td>
<td>4.006(4)</td>
<td>165.4(6)</td>
</tr>
<tr>
<td>C(28') - H(28D)···S(2')</td>
<td>x, y, z+1</td>
<td>3.01(5)</td>
<td>3.885(6)</td>
<td>150.4(3)</td>
</tr>
<tr>
<td>C(10) - H(10)···S(4')</td>
<td>x, y, -1+z</td>
<td>3.04(5)</td>
<td>3.500(5)</td>
<td>112.0(3)</td>
</tr>
<tr>
<td>C(28') - H(28D)···S(4')</td>
<td></td>
<td>2.59(1)</td>
<td>3.203(6)</td>
<td>121.2(4)</td>
</tr>
<tr>
<td>C(3) - H(3A)···O(2)</td>
<td>-x+y+1/3, -x+5/3, z-1/3</td>
<td>2.53(1)</td>
<td>3.233(4)</td>
<td>143.8(2)</td>
</tr>
<tr>
<td>C(7) - H(7)···O(2)</td>
<td>-y+5/3, x-y+4/3, z+1/3</td>
<td>2.53(1)</td>
<td>3.133(4)</td>
<td>122.5(4)</td>
</tr>
<tr>
<td>C(12) - H(12)···O(2)</td>
<td>-x+y+1/3, -x+5/3, z-1/3</td>
<td>2.75(2)</td>
<td>3.644(4)</td>
<td>168.2(1)</td>
</tr>
<tr>
<td>C(14) - H(14)···O(2)</td>
<td>-y+5/3, x-y+4/3, z-2/3</td>
<td>2.90(1)</td>
<td>3.490(4)</td>
<td>122.5(3)</td>
</tr>
<tr>
<td>C(5) - H(5)···O(4)</td>
<td>x, y, z+1</td>
<td>2.82(1)</td>
<td>3.702(5)</td>
<td>159.2(3)</td>
</tr>
<tr>
<td>C(10) - H(10)···O(4)</td>
<td>-x+4/3, -y+5/3, -z+2/3</td>
<td>2.63(1)</td>
<td>3.310(4)</td>
<td>130.9(1)</td>
</tr>
<tr>
<td>C(26) - H(26)···O(4)</td>
<td>x, y, z+1</td>
<td>2.91(1)</td>
<td>3.778(6)</td>
<td>155.1(5)</td>
</tr>
<tr>
<td>C(26) - H(26)···O(5)</td>
<td>-x+4/3, -y+5/3, -z+5/3</td>
<td>2.73(1)</td>
<td>3.539(7)</td>
<td>145.8(3)</td>
</tr>
<tr>
<td>C(29) - H(29A)···O(6)</td>
<td>y, -x+y+1, -z+2</td>
<td>2.54(1)</td>
<td>3.174(13)</td>
<td>122.9(2)</td>
</tr>
<tr>
<td>C(17') - H(17')···O(6')</td>
<td>y, -x+y+1, -z+1</td>
<td>2.43</td>
<td>3.34(8)</td>
<td>165.5(6)</td>
</tr>
<tr>
<td>O(3) - H(3)···S(1)</td>
<td></td>
<td>2.54(2)</td>
<td>3.030(3)</td>
<td>119.8(2)</td>
</tr>
<tr>
<td>O(5) - H(5A)···S(2)</td>
<td></td>
<td>2.57(1)</td>
<td>3.072(5)</td>
<td>120.7(4)</td>
</tr>
<tr>
<td>O(1) - H(1)···S(4)</td>
<td></td>
<td>2.52(1)</td>
<td>3.000(2)</td>
<td>118.7(1)</td>
</tr>
<tr>
<td>O(1) - H(1)···S(4')</td>
<td></td>
<td>2.48(1)</td>
<td>3.041(4)</td>
<td>126.7(2)</td>
</tr>
<tr>
<td>O(3) - H(3)···O(1)</td>
<td></td>
<td>2.36</td>
<td>2.919(3)</td>
<td>126.5(1)</td>
</tr>
<tr>
<td>O(5) - H(5A)···O(4)</td>
<td>-x+4/3, -y+5/3, -z+2/3</td>
<td>2.02</td>
<td>2.690(5)</td>
<td>138.2(5)</td>
</tr>
<tr>
<td>O(5') - H(5')···O(4)</td>
<td>-x+4/3, -y+5/3, -z+2/3</td>
<td>2.58</td>
<td>2.99(1)</td>
<td>112.9(5)</td>
</tr>
<tr>
<td>O(1) - H(1)···O(7)</td>
<td></td>
<td>2.19</td>
<td>2.985(6)</td>
<td>163.6(3)</td>
</tr>
<tr>
<td>O(1) - H(1)···O(7')</td>
<td></td>
<td>2.28</td>
<td>3.040(16)</td>
<td>155.0(1)</td>
</tr>
</tbody>
</table>
Table S12 Hydrogen bonds of compound 12-CHCl₃

<table>
<thead>
<tr>
<th>Atoms involved D - H···A</th>
<th>Symmetry</th>
<th>H···A</th>
<th>D···A</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2) - H(2)···S(2)</td>
<td></td>
<td>2.61</td>
<td>3.059(7)</td>
<td>114.8</td>
</tr>
<tr>
<td>O(2) - H(2)···O(1)</td>
<td></td>
<td>2.31</td>
<td>2.810(8)</td>
<td>119.6</td>
</tr>
</tbody>
</table>

Table S13 The Cl···Cl interactions of compound 12-CHCl₃

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>d(Cl···Cl)/Å</th>
<th>d(C···Cl)/Å</th>
<th>𝜃₁ = 𝜃₂(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(17) - Cl(2)···Cl(2) - C(17)</td>
<td>1-x, 2-y, -z</td>
<td>2.921</td>
<td>4.492</td>
</tr>
</tbody>
</table>

Table S14 The cyano···Cl interactions of compound 12-CHCl₃

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>d(N···Cl)/Å</th>
<th>d(Cα···Cl) /Å</th>
<th>d(Cβ···N) /Å</th>
<th>𝜃₁(°)</th>
<th>𝜃₂(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cα - N(1)···Cl(3) - Cβ</td>
<td>x-y, x, 2-z</td>
<td>2.779</td>
<td>3.786</td>
<td>4.285</td>
<td>147.94</td>
</tr>
</tbody>
</table>

Table S15 The Cl···π interactions of compound 12-CHCl₃

<table>
<thead>
<tr>
<th>C - Cl···Cg</th>
<th>Symmetry</th>
<th>r/ Å</th>
<th>d/ Å</th>
<th>α(°)</th>
<th>φ(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(17) - Cl (1)···Cg(1)</td>
<td>y, 1-x+y, 1-z</td>
<td>3.403(6)</td>
<td>C(1) - C(6)</td>
<td>3.470</td>
<td>104.52(12)</td>
</tr>
<tr>
<td>C(17) - Cl (1)···Cg(2)</td>
<td>x, 1+x-y, -1/2+z</td>
<td>3.928(3)</td>
<td>C(7)</td>
<td>3.448</td>
<td>106.87(10)</td>
</tr>
</tbody>
</table>
Table S16 Sums of the van der Waals radii (vdW) of C and phenyl ring with common lp-containing atoms (atom LP)\(^{S2}\)

<table>
<thead>
<tr>
<th>Atom LP</th>
<th>vdW radii/ Å</th>
<th>vdW(LP) + vdW(C(^a))/ Å</th>
<th>vdW(LP) + vdW(Phenyl ring)/ Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.20</td>
<td>2.90</td>
<td>3.05</td>
</tr>
<tr>
<td>O</td>
<td>1.52</td>
<td>3.22</td>
<td>3.37</td>
</tr>
<tr>
<td>Cl</td>
<td>1.75</td>
<td>3.40</td>
<td>3.45</td>
</tr>
<tr>
<td>S</td>
<td>1.80</td>
<td>3.50</td>
<td>3.65</td>
</tr>
<tr>
<td>N</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(^a)</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenyl ring(^{S3})</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference
<table>
<thead>
<tr>
<th>Compound</th>
<th>Split atoms</th>
<th>Occupation factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-CHCl₃</td>
<td>C(26)-C(31), S(3), O(4)/C(26')-C(31'), S(3'), O(4')</td>
<td>0.859(16)/0.141(16)</td>
</tr>
<tr>
<td>8</td>
<td>C(14)-C(16)/C(14')-C(16')</td>
<td>0.826(8)/0.174(8)</td>
</tr>
<tr>
<td>9</td>
<td>C(15)-C(17)/C(15')-C(17')
 C(32)-C(34)/C(32')-C(34')</td>
<td>0.66/0.34
 0.75/0.25</td>
</tr>
<tr>
<td></td>
<td>O(4), O(4A)/O(4B), O(2)/O(2')</td>
<td>0.375, 0.375/0.25
 0.69/0.31</td>
</tr>
<tr>
<td></td>
<td>O(6)/O(6')</td>
<td>0.78/0.22</td>
</tr>
<tr>
<td>11</td>
<td>C(15)-C(30), S(2), S(3), S(4), O(5), O(6), O(7')
 C(15')-C(30'), S(2'), S(3'), S(4'), O(5'), O(6'), O(7')</td>
<td>0.707(3)/0.293(3)</td>
</tr>
</tbody>
</table>