Electronic Supplementary Information (ESI)

Ag-embeded MnO nanorod: Facile synthesis and oxygen reduction

J. Liu, *a W. X. He, a X. J. Wei, a A.Q. Diao, c J.M. Xie b and X.M. Lü *b

a. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
b. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
c. Taizhou Polytechnic College, Taizhou, Jiangsu, 225300

* Corresponding author: liujun1227@mail.ujs.edu.cn (J.Liu); laiyangmeng@163.com (X.M.Lü)
Fig. S1. TG curve of the sample prepared with Ag⁺/Mn²⁺ molar ratio of 1:200 molar ratio (a), and the corresponding XRD patterns annealed at 200, 400, and 600 °C (b).

Seen from the TG curve and XRD patterns, there was an initial weight loss of desorbed water as temperature was increased up to 200 °C. The first sharp weight loss due to chemical water desorption and PVP residue occurred at ca. 200-250 °C, indicating the sample began to simultaneously decompose and convert into Ag and amorphous MnOₓ. No characteristic XRD peaks due to MnOₓ were observed after the sample was annealed at 200 °C. The second weight loss between 300 and 550 °C was caused by the oxygen release, forming crystalline MnO. The XRD patterns of samples
annealed at 600 °C confirmed the evolution of stable MnO phase. However, to obtain the stable Ag-MnO, we calcined the sample at 800°C.
Fig. S2. Raman spectroscopy of sample prepared at molar ratio of 1:200 before (a) and after calcination (b).

The RSS are plotted to determine the structure of as-prepared sample at molar ratio of 1:200 before and after calcination. As shown in Fig S2(a), the bands at 646, 616, 554 and 385 cm\(^{-1}\) are assigned to hollandite.\(^1\),\(^2\) As to the band at 646 cm\(^{-1}\), which is also close to the reported value of 648 cm\(^{-1}\) for MnO\(_2\). The result of RSS peaks, appeared at 800-350 cm\(^{-1}\), verifies the formation of Mn-O vibration in hollandite. The RSS peaks located at 1586 and 1350 cm\(^{-1}\), which may be assigned to the G band and D band of the carbon owing to the decomposed surfactant, are disappeared after calcination. Sharp peak at 653 cm\(^{-1}\) and a broad peak at 546 cm\(^{-1}\), are confirmed to be MnO phase, consistent with the reported bands for MnO at 654 and 537 cm\(^{-1}\).\(^3\),\(^4\) No Raman peaks due to Ag-O group are observed in Fig. S3b, indicating that Ag\(_{1.8}\)Mn\(_8\)O\(_{16}\) nanoparticles decompose to Ag\(^0\) and MnO after annealed at 800 °C.
Fig. S3. XRD pattern for 1-D Ag/Ag\textsubscript{1.8}Mn\textsubscript{8}O\textsubscript{16} and Ag-MnO nanorods prepared with CH\textsubscript{3}COOA\textsubscript{g} and Mn(CH\textsubscript{3}COO\textsubscript{2} and TEM image of the sample annealed at 800 °C.
References

