Supporting information

Constructions of a series of lanthanide metal-organic frameworks: structure, luminescence and white light emission

Lanlan Shen, Lu Yang, Yong Fan, Li Wang,* and Jianing Xu* a

Table of contents

Fig.S1 TG curves of 1-Eu, 1-Tb and 2. S2

Fig.S2 IR spectra of 1-Eu, 1-Tb and 2. S3

Fig.S3 The emission spectra of H2L ligand. S4

Fig. S4 The emission spectra of 1-Gd (a) and 2 (b). S5

Fig.S5 The experimental PXRD pattern of 3 and simulated PXRD pattern of 1. S6

Table S1 Selected bond length [Å] and bond angle [°] for 1-Eu. S7-S8

Table S2 Selected bond length [Å] and bond angle [°] for 1-Tb. S9-S10

Table S3 Selected bond length [Å] and bond angle [°] for 2. S11-S12

Table S4 Hydrogen bonds for 1-Eu [Å] and [°] S13

Table S5 Hydrogen bonds for 1-Tb [Å] and [°] S14
Fig.S1 TG curves of 1-Eu, 1-Tb and 2.
Fig. S2 IR spectra of 1-Eu, 1-Tb and 2.
Fig. S3 The emission spectra of H$_2$L ligand.
Fig. S4 The emission spectra of 1-Gd (a) and 2 (b).
Fig. S5 The experimental PXRD pattern of 3 and simulated PXRD pattern of 1.
Table S1 Selected bond length [Å] and bond angle [°] for 1-Eu.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu(1)-O(10)</td>
<td>2.3198(14)</td>
</tr>
<tr>
<td>Eu(1)-O(1)</td>
<td>2.3789(15)</td>
</tr>
<tr>
<td>Eu(1)-O(12)</td>
<td>2.3903(18)</td>
</tr>
<tr>
<td>Eu(1)-O(17)#1</td>
<td>2.3932(14)</td>
</tr>
<tr>
<td>Eu(1)-O(13)</td>
<td>2.4137(15)</td>
</tr>
<tr>
<td>Eu(1)-O(15)</td>
<td>2.4346(16)</td>
</tr>
<tr>
<td>Eu(1)-O(11)</td>
<td>2.4495(19)</td>
</tr>
<tr>
<td>Eu(1)-O(14)</td>
<td>2.4827(16)</td>
</tr>
<tr>
<td>O(17)-Eu(1)#6</td>
<td>2.3932(14)</td>
</tr>
<tr>
<td>O(7)-Eu(2)#5</td>
<td>2.5084(15)</td>
</tr>
<tr>
<td>O(9)-Eu(2)#5</td>
<td>2.5113(15)</td>
</tr>
<tr>
<td>O(19)-Eu(2)#4</td>
<td>2.4333(15)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(1)</td>
<td>120.79(6)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(12)</td>
<td>78.20(7)</td>
</tr>
<tr>
<td>O(1)-Eu(1)-O(12)</td>
<td>72.53(6)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(17)#1</td>
<td>132.27(6)</td>
</tr>
<tr>
<td>O(1)-Eu(1)-O(17)#1</td>
<td>77.11(6)</td>
</tr>
<tr>
<td>O(12)-Eu(1)-O(17)#1</td>
<td>145.82(7)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(13)</td>
<td>76.00(6)</td>
</tr>
<tr>
<td>O(1)-Eu(1)-O(13)</td>
<td>137.54(5)</td>
</tr>
<tr>
<td>O(12)-Eu(1)-O(13)</td>
<td>73.98(6)</td>
</tr>
<tr>
<td>O(17)#1-Eu(1)-O(13)</td>
<td>122.59(5)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(15)</td>
<td>150.42(6)</td>
</tr>
<tr>
<td>O(1)-Eu(1)-O(15)</td>
<td>78.07(6)</td>
</tr>
<tr>
<td>O(12)-Eu(1)-O(15)</td>
<td>87.62(7)</td>
</tr>
<tr>
<td>O(17)#1-Eu(1)-O(15)</td>
<td>70.87(6)</td>
</tr>
<tr>
<td>O(13)-Eu(1)-O(15)</td>
<td>75.17(5)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(11)</td>
<td>70.91(7)</td>
</tr>
<tr>
<td>O(1)-Eu(1)-O(11)</td>
<td>72.45(7)</td>
</tr>
<tr>
<td>O(12)-Eu(1)-O(11)</td>
<td>109.75(8)</td>
</tr>
<tr>
<td>O(17)#1-Eu(1)-O(11)</td>
<td>74.73(6)</td>
</tr>
<tr>
<td>O(13)-Eu(1)-O(11)</td>
<td>144.82(6)</td>
</tr>
<tr>
<td>O(15)-Eu(1)-O(11)</td>
<td>138.65(6)</td>
</tr>
<tr>
<td>O(10)-Eu(1)-O(14)</td>
<td>73.39(6)</td>
</tr>
<tr>
<td>O(1)-Eu(1)-O(14)</td>
<td>143.68(6)</td>
</tr>
<tr>
<td>O(12)-Eu(1)-O(14)</td>
<td>142.70(6)</td>
</tr>
<tr>
<td>O(17)#1-Eu(1)-O(14)</td>
<td>70.56(6)</td>
</tr>
<tr>
<td>O(13)-Eu(1)-O(14)</td>
<td>76.05(6)</td>
</tr>
<tr>
<td>O(15)-Eu(1)-O(14)</td>
<td>105.64(6)</td>
</tr>
<tr>
<td>O(11)-Eu(1)-O(14)</td>
<td>83.28(7)</td>
</tr>
<tr>
<td>O(19)#2-Eu(2)-O(16)</td>
<td>77.10(6)</td>
</tr>
<tr>
<td>O(19)#2-Eu(2)-O(5)</td>
<td>151.92(5)</td>
</tr>
</tbody>
</table>

O(10)-Eu(1)-O(1) 120.79(6) O(16)-Eu(2)-O(5) 127.70(5)
O(10)-Eu(1)-O(12) 78.20(7) O(19)#2-Eu(2)-O(3)#2 127.30(5)
O(1)-Eu(1)-O(12) 72.53(6) O(16)-Eu(2)-O(3)#2 89.34(5)
O(10)-Eu(1)-O(17)#1 132.27(6) O(5)-Eu(2)-O(3)#2 71.78(5)
O(1)-Eu(1)-O(17)#1 77.11(6) O(19)#2-Eu(2)-N(1) 135.49(5)
O(12)-Eu(1)-O(17)#1 145.82(7) O(16)-Eu(2)-N(1) 63.71(5)
O(10)-Eu(1)-O(13) 76.00(6) O(5)-Eu(2)-N(1) 64.31(5)
O(1)-Eu(1)-O(13) 137.54(5) O(3)#2-Eu(2)-N(1) 74.55(5)
O(12)-Eu(1)-O(13) 73.98(6) O(19)#2-Eu(2)-N(1) 80.77(6)
O(17)#1-Eu(1)-O(13) 122.59(5) O(16)-Eu(2)-O(7)#3 148.43(5)
O(10)-Eu(1)-O(15) 150.42(6) O(5)-Eu(2)-O(7)#3 80.28(5)
O(1)-Eu(1)-O(15) 78.07(6) O(3)#2-Eu(2)-O(7)#3 86.41(5)
O(12)-Eu(1)-O(15) 87.62(7) N(1)-Eu(2)-O(7)#3 143.43(6)
O(17)#1-Eu(1)-O(15) 70.87(6) O(19)#2-Eu(2)-N(2)#2 64.38(5)
O(13)-Eu(1)-O(15) 75.17(5) O(16)-Eu(2)-N(2)#2 74.73(5)
O(10)-Eu(1)-O(11) 70.91(7) O(5)-Eu(2)-N(2)#2 129.29(5)
O(1)-Eu(1)-O(11) 72.45(7) O(3)#2-Eu(2)-N(2)#2 62.93(5)
O(12)-Eu(1)-O(11) 109.75(8) N(1)-Eu(2)-N(2)#2 119.75(5)
O(17)#1-Eu(1)-O(11) 74.73(6) O(7)#3-Eu(2)-N(2)#2 75.51(5)
O(13)-Eu(1)-O(11) 144.82(6) O(19)#2-Eu(2)-O(9)#3 84.60(5)
O(15)-Eu(1)-O(11) 138.65(6) O(16)-Eu(2)-O(9)#3 75.10(5)
O(10)-Eu(1)-O(14) 73.39(6) O(5)-Eu(2)-O(9)#3 89.48(6)
O(1)-Eu(1)-O(14) 143.68(6) O(3)#2-Eu(2)-O(9)#3 140.78(5)
O(12)-Eu(1)-O(14) 142.70(6) N(1)-Eu(2)-O(9)#3 66.26(6)
O(17)#1-Eu(1)-O(14) 70.56(6) O(7)#3-Eu(2)-O(9)#3 124.95(5)
O(13)-Eu(1)-O(14) 76.05(6) N(2)#2-Eu(2)-O(9)#3 140.59(6)
O(15)-Eu(1)-O(14) 105.64(6) O(19)#2-Eu(2)-N(3)#3 71.49(5)
O(11)-Eu(1)-O(14) 83.28(7) O(16)-Eu(2)-N(3)#3 128.94(5)
O(19)#2-Eu(2)-O(16) 77.10(6) O(5)-Eu(2)-N(3)#3 81.36(6)
O(19)#2-Eu(2)-O(5) 151.92(5) O(3)#2-Eu(2)-N(3)#3 141.70(5)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
<th>Angle 1</th>
<th>Angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(16)-Eu(2)-O(5)</td>
<td>127.70(5)</td>
<td>N(1)-Eu(2)-N(3)#3</td>
<td>117.65(6)</td>
</tr>
<tr>
<td>O(19)#2-Eu(2)-O(3)#2</td>
<td>127.30(5)</td>
<td>O(7)#3-Eu(2)-N(3)#3</td>
<td>62.06(5)</td>
</tr>
<tr>
<td>O(16)-Eu(2)-O(3)#2</td>
<td>89.34(5)</td>
<td>N(2)#2-Eu(2)-N(3)#3</td>
<td>122.30(6)</td>
</tr>
<tr>
<td>O(5)-Eu(2)-O(3)#2</td>
<td>71.78(5)</td>
<td>O(9)#3-Eu(2)-N(3)#3</td>
<td>62.96(5)</td>
</tr>
<tr>
<td>O(19)#2-Eu(2)-N(1)</td>
<td>135.49(5)</td>
<td>O(7)#3-Eu(2)-N(2)#2</td>
<td>75.51(5)</td>
</tr>
<tr>
<td>O(16)-Eu(2)-N(1)</td>
<td>63.71(5)</td>
<td>O(19)#2-Eu(2)-O(9)#3</td>
<td>84.60(5)</td>
</tr>
<tr>
<td>O(5)-Eu(2)-N(1)</td>
<td>64.31(5)</td>
<td>O(16)-Eu(2)-O(9)#3</td>
<td>75.10(5)</td>
</tr>
<tr>
<td>O(3)#2-Eu(2)-N(1)</td>
<td>74.55(5)</td>
<td>O(5)-Eu(2)-O(9)#3</td>
<td>89.48(6)</td>
</tr>
<tr>
<td>O(19)#2-Eu(2)-O(7)#3</td>
<td>80.77(6)</td>
<td>O(3)#2-Eu(2)-O(9)#3</td>
<td>140.78(5)</td>
</tr>
<tr>
<td>O(16)-Eu(2)-O(7)#3</td>
<td>148.43(5)</td>
<td>N(1)-Eu(2)-O(9)#3</td>
<td>66.26(6)</td>
</tr>
<tr>
<td>O(5)-Eu(2)-O(7)#3</td>
<td>80.28(5)</td>
<td>O(7)#3-Eu(2)-O(9)#3</td>
<td>124.95(5)</td>
</tr>
<tr>
<td>O(3)#2-Eu(2)-O(7)#3</td>
<td>86.41(5)</td>
<td>N(2)#2-Eu(2)-O(9)#3</td>
<td>140.59(6)</td>
</tr>
<tr>
<td>N(1)-Eu(2)-O(7)#3</td>
<td>143.43(6)</td>
<td>O(19)#2-Eu(2)-N(3)#3</td>
<td>71.49(5)</td>
</tr>
<tr>
<td>O(19)#2-Eu(2)-N(2)#2</td>
<td>64.38(5)</td>
<td>O(16)-Eu(2)-N(3)#3</td>
<td>128.94(5)</td>
</tr>
<tr>
<td>O(16)-Eu(2)-N(2)#2</td>
<td>74.73(5)</td>
<td>O(5)-Eu(2)-N(3)#3</td>
<td>81.36(6)</td>
</tr>
<tr>
<td>O(5)-Eu(2)-N(2)#2</td>
<td>129.29(5)</td>
<td>O(3)#2-Eu(2)-N(3)#3</td>
<td>141.70(5)</td>
</tr>
<tr>
<td>O(3)#2-Eu(2)-N(2)#2</td>
<td>62.93(5)</td>
<td>N(1)-Eu(2)-N(3)#3</td>
<td>117.65(6)</td>
</tr>
<tr>
<td>N(1)-Eu(2)-N(2)#2</td>
<td>119.75(5)</td>
<td>O(7)#3-Eu(2)-N(3)#3</td>
<td>62.06(5)</td>
</tr>
<tr>
<td>O(9)#3-Eu(2)-N(3)#3</td>
<td>62.96(5)</td>
<td>N(2)#2-Eu(2)-N(3)#3</td>
<td>122.30(6)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x+3,y-1/2,-z+3/2 #2 x+1,y,z #3 -x+2,y+1/2,-z+3/2
#4 x-1,y,z #5 -x+2,y-1/2,-z+3/2 #6 -x+3,y+1/2,-z+3/2
<table>
<thead>
<tr>
<th>Bond Length [Å]</th>
<th>Bond Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(8)-Tb(1)#1</td>
<td>2.327(3)</td>
</tr>
<tr>
<td>N(1)-Tb(3)#2</td>
<td>2.440(4)</td>
</tr>
<tr>
<td>N(2)-Tb(3)</td>
<td>2.456(4)</td>
</tr>
<tr>
<td>N(3)-Tb(3)#3</td>
<td>2.512(4)</td>
</tr>
<tr>
<td>O(1)-Tb(1)</td>
<td>2.366(3)</td>
</tr>
<tr>
<td>O(2)-Tb(1)</td>
<td>2.337(3)</td>
</tr>
<tr>
<td>O(3)-Tb(3)</td>
<td>2.433(3)</td>
</tr>
<tr>
<td>O(4)-Tb(3)</td>
<td>2.390(3)</td>
</tr>
<tr>
<td>O(5)-Tb(3)#2</td>
<td>2.394(3)</td>
</tr>
<tr>
<td>O(6)-Tb(1)</td>
<td>2.391(3)</td>
</tr>
<tr>
<td>O(7)-Tb(3)#2</td>
<td>2.386(3)</td>
</tr>
<tr>
<td>Tb(3)-N(3)#6</td>
<td>2.496(4)</td>
</tr>
</tbody>
</table>

O(10)-Tb(1)	78.62(14)
O(10)-Tb(1)-O(11)	131.93(12)
O(2)-Tb(1)-O(11)	145.51(13)
O(10)-Tb(1)-O(8)#4	122.00(13)
O(2)-Tb(1)-O(8)#4	72.07(12)
O(11)-Tb(1)-O(8)#4	76.75(12)
O(10)-Tb(1)-O(1)	75.36(12)
O(2)-Tb(1)-O(1)	74.59(13)
O(11)-Tb(1)-O(1)	123.01(11)
O(8)#4-Tb(1)-O(1)	137.31(11)
O(10)-Tb(1)-O(6)	150.40(12)
O(2)-Tb(1)-O(6)	88.34(14)
O(11)-Tb(1)-O(6)	70.65(12)
O(8)#4-Tb(1)-O(6)	77.53(12)
O(1)-Tb(1)-O(6)	75.59(12)
O(10)-Tb(1)-O(15)	70.90(13)
O(2)-Tb(1)-O(15)	108.48(15)
O(11)-Tb(1)-O(15)	75.07(12)
O(8)#4-Tb(1)-O(15)	72.73(13)
O(1)-Tb(1)-O(15)	144.52(12)
O(6)-Tb(1)-O(15)	138.70(12)
O(10)-Tb(1)-O(12)	72.97(13)
O(2)-Tb(1)-O(12)	142.82(13)
O(11)-Tb(1)-O(12)	70.85(12)
O(8)#4-Tb(1)-O(12)	144.22(12)
O(1)-Tb(1)-O(12)	75.38(12)
O(6)-Tb(1)-O(12)	104.86(14)
O(15)-Tb(1)-O(12)	84.45(14)
O(4)-Tb(3)-O(7)#5	150.83(11)

Table S2: Selected bond length [Å] and bond angle [°] for 1-Tb.
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2)-Tb(3)-N(3)#6</td>
<td>122.58(13)</td>
<td>129.10(11)</td>
</tr>
<tr>
<td>O(5)#5-Tb(3)-N(3)#6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(14)#6-Tb(3)-N(3)#6</td>
<td>62.34(11)</td>
<td>140.72(11)</td>
</tr>
<tr>
<td>O(18)#6-Tb(3)-N(3)#6</td>
<td>63.65(11)</td>
<td></td>
</tr>
<tr>
<td>N(1)#5-Tb(3)-N(3)#6</td>
<td></td>
<td>117.21(13)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,y+1/2,-z+1/2 #2 -x,y+1/2,-z+1/2
#3 -x+1,y+1/2,-z+1/2 #4 -x-1,y-1/2,-z+1/2
#5 -x,y-1/2,-z+1/2 #6 -x+1,y-1/2,-z+1/2
Table S3

Selected bond length [Å] and bond angle [°] for 2.

<table>
<thead>
<tr>
<th>Bond Length/Bond Angle</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd(1)-O(12)</td>
<td>2.403(4)</td>
<td>Gd(2)-O(11)</td>
<td>2.295(3)</td>
</tr>
<tr>
<td>Gd(1)-O(2)</td>
<td>2.414(4)</td>
<td>Gd(2)-O(14)</td>
<td>2.358(3)</td>
</tr>
<tr>
<td>Gd(1)-O(10)</td>
<td>2.421(4)</td>
<td>Gd(2)-O(15)</td>
<td>2.362(4)</td>
</tr>
<tr>
<td>Gd(1)-O(5)</td>
<td>2.435(3)</td>
<td>Gd(2)-O(9)</td>
<td>2.409(4)</td>
</tr>
<tr>
<td>Gd(1)-O(7)</td>
<td>2.439(3)</td>
<td>Gd(2)-O(8)</td>
<td>2.408(4)</td>
</tr>
<tr>
<td>Gd(1)-O(3)</td>
<td>2.448(3)</td>
<td>Gd(2)-O(6)</td>
<td>2.428(4)</td>
</tr>
<tr>
<td>Gd(1)-O(1)</td>
<td>2.452(3)</td>
<td>Gd(2)-O(16)</td>
<td>2.451(4)</td>
</tr>
<tr>
<td>Gd(1)-N(1)</td>
<td>2.499(4)</td>
<td>Gd(2)-O(13)</td>
<td>2.458(4)</td>
</tr>
<tr>
<td>Gd(1)-O(4)</td>
<td>2.555(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(2)</td>
<td>135.90(12)</td>
<td>O(7)-Gd(1)-O(4)</td>
<td>70.12(12)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(10)</td>
<td>87.49(14)</td>
<td>O(3)-Gd(1)-O(4)</td>
<td>128.79(12)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-O(10)</td>
<td>78.60(14)</td>
<td>O(1)-Gd(1)-O(4)</td>
<td>133.56(11)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(5)</td>
<td>77.46(13)</td>
<td>N(1)-Gd(1)-O(4)</td>
<td>114.86(12)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-O(5)</td>
<td>137.98(13)</td>
<td>O(11)-Gd(2)-O(14)</td>
<td>143.67(14)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(5)</td>
<td>137.04(12)</td>
<td>O(11)-Gd(2)-O(15)</td>
<td>84.48(14)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(7)</td>
<td>77.91(13)</td>
<td>O(14)-Gd(2)-O(15)</td>
<td>74.67(13)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-O(7)</td>
<td>87.02(13)</td>
<td>O(11)-Gd(2)-O(9)</td>
<td>106.80(13)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(7)</td>
<td>140.86(13)</td>
<td>O(14)-Gd(2)-O(9)</td>
<td>80.69(13)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(7)</td>
<td>74.98(12)</td>
<td>O(15)-Gd(2)-O(9)</td>
<td>150.14(13)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(3)</td>
<td>74.73(12)</td>
<td>O(11)-Gd(2)-O(8)</td>
<td>143.94(14)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-O(3)</td>
<td>135.70(13)</td>
<td>O(14)-Gd(2)-O(8)</td>
<td>72.05(14)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(3)</td>
<td>70.92(12)</td>
<td>O(15)-Gd(2)-O(8)</td>
<td>109.11(15)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(3)</td>
<td>66.35(11)</td>
<td>O(9)-Gd(2)-O(8)</td>
<td>78.24(13)</td>
</tr>
<tr>
<td>O(7)-Gd(1)-O(3)</td>
<td>136.36(12)</td>
<td>O(11)-Gd(2)-O(6)</td>
<td>84.96(13)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(1)</td>
<td>146.15(12)</td>
<td>O(14)-Gd(2)-O(6)</td>
<td>117.09(13)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-O(1)</td>
<td>73.24(12)</td>
<td>O(15)-Gd(2)-O(6)</td>
<td>75.75(14)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(1)</td>
<td>82.14(13)</td>
<td>O(9)-Gd(2)-O(6)</td>
<td>131.68(12)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(1)</td>
<td>88.47(12)</td>
<td>O(8)-Gd(2)-O(6)</td>
<td>67.41(12)</td>
</tr>
<tr>
<td>O(7)-Gd(1)-O(1)</td>
<td>128.20(11)</td>
<td>O(11)-Gd(2)-O(16)</td>
<td>75.21(13)</td>
</tr>
<tr>
<td>O(3)-Gd(1)-O(1)</td>
<td>71.42(12)</td>
<td>O(14)-Gd(2)-O(16)</td>
<td>137.03(13)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-N(1)</td>
<td>134.65(13)</td>
<td>O(15)-Gd(2)-O(16)</td>
<td>142.94(13)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-N(1)</td>
<td>68.51(13)</td>
<td>O(9)-Gd(2)-O(16)</td>
<td>66.68(12)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-N(1)</td>
<td>137.78(13)</td>
<td>O(8)-Gd(2)-O(16)</td>
<td>74.45(14)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-N(1)</td>
<td>69.47(12)</td>
<td>O(6)-Gd(2)-O(16)</td>
<td>71.92(12)</td>
</tr>
<tr>
<td>O(7)-Gd(1)-N(1)</td>
<td>64.36(12)</td>
<td>O(11)-Gd(2)-O(13)</td>
<td>71.87(14)</td>
</tr>
<tr>
<td>O(3)-Gd(1)-N(1)</td>
<td>116.33(12)</td>
<td>O(14)-Gd(2)-O(13)</td>
<td>75.29(14)</td>
</tr>
<tr>
<td>O(1)-Gd(1)-N(1)</td>
<td>63.86(12)</td>
<td>O(15)-Gd(2)-O(13)</td>
<td>79.63(15)</td>
</tr>
<tr>
<td>O(12)-Gd(1)-O(4)</td>
<td>70.88(12)</td>
<td>O(9)-Gd(2)-O(13)</td>
<td>78.00(14)</td>
</tr>
<tr>
<td>O(2)-Gd(1)-O(4)</td>
<td>65.02(12)</td>
<td>O(8)-Gd(2)-O(13)</td>
<td>142.10(13)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(4)</td>
<td>70.80(12)</td>
<td>O(6)-Gd(2)-O(13)</td>
<td>147.57(13)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(4)</td>
<td>136.67(12)</td>
<td>O(16)-Gd(2)-O(13)</td>
<td>121.06(14)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x-1,y,z #3 -x+1,-y,-z+2
#4 x-1,y-1,z #5 -x+2,-y+1,-z+1 #6 x+1,y+1,z
<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H) [Å]</th>
<th>d(H...A) [Å]</th>
<th>d(D...A) [Å]</th>
<th><(DHA) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(14)-H(29)...O(9)</td>
<td>0.802(18)</td>
<td>2.30(3)</td>
<td>2.979(2)</td>
<td>143(4)</td>
</tr>
<tr>
<td>O(14)-H(27)...O(21)#7</td>
<td>0.82</td>
<td>1.97</td>
<td>2.662(4)</td>
<td>141.6</td>
</tr>
<tr>
<td>O(6)-H(6)...O(7)#8</td>
<td>0.82</td>
<td>1.83</td>
<td>2.581(2)</td>
<td>150.7</td>
</tr>
<tr>
<td>O(4)-H(4)...O(20)#9</td>
<td>0.82</td>
<td>1.91</td>
<td>2.703(3)</td>
<td>163.0</td>
</tr>
<tr>
<td>O(2)-H(2)...O(8)#10</td>
<td>0.82</td>
<td>1.79</td>
<td>2.593(2)</td>
<td>166.0</td>
</tr>
<tr>
<td>O(21)-H(22)...O(18)#11</td>
<td>0.839(19)</td>
<td>2.47(3)</td>
<td>3.256(5)</td>
<td>157(5)</td>
</tr>
<tr>
<td>O(21)-H(21)...O(8)#9</td>
<td>0.85(2)</td>
<td>2.10(2)</td>
<td>2.943(4)</td>
<td>177(7)</td>
</tr>
<tr>
<td>O(12)-H(28)...O(14)#3</td>
<td>0.79(4)</td>
<td>2.08(4)</td>
<td>2.858(3)</td>
<td>170(4)</td>
</tr>
<tr>
<td>O(12)-H(18)...O(3)</td>
<td>0.84(4)</td>
<td>1.91(4)</td>
<td>2.703(2)</td>
<td>156(3)</td>
</tr>
<tr>
<td>O(20)-H(16)...O(6)#12</td>
<td>0.78(4)</td>
<td>2.04(4)</td>
<td>2.820(2)</td>
<td>179(4)</td>
</tr>
<tr>
<td>O(20)-H(15)...O(19)#13</td>
<td>0.78(4)</td>
<td>2.00(4)</td>
<td>2.774(2)</td>
<td>175(4)</td>
</tr>
<tr>
<td>O(15)-H(26)...O(18)#14</td>
<td>0.80(4)</td>
<td>2.01(4)</td>
<td>2.805(2)</td>
<td>172(4)</td>
</tr>
<tr>
<td>O(15)-H(25)...O(16)</td>
<td>0.82(3)</td>
<td>1.92(4)</td>
<td>2.722(2)</td>
<td>163(3)</td>
</tr>
<tr>
<td>O(11)-H(3)...O(5)#1</td>
<td>0.70(4)</td>
<td>2.13(4)</td>
<td>2.772(2)</td>
<td>154(4)</td>
</tr>
<tr>
<td>O(11)-H(24)...O(20)#2</td>
<td>0.77(3)</td>
<td>2.15(4)</td>
<td>2.906(3)</td>
<td>165(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

1. -x+3, y-1/2, -z+3/2
2. x+1, y, z
3. -x+2, y+1/2, -z+3/2
4. x-1, y, z
5. -x+2, y-1/2, -z+3/2
6. -x+3, y+1/2, -z+3/2
7. -x+1, y-1/2, -z+3/2
8. x, y+1/2, z-1/2
9. -x+1, y+1, -z+2
10. -x+2, y+1, -z+2
11. x, y+3/2, z+1/2
12. x, y+1/2, z+1/2
13. -x, y-1/2, -z+3/2
14. -x+1, -y+1, -z+1
Table S5 Hydrogen bonds for 1-Tb [Å] and [°]

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(20)-H(10)...O(17)#2</td>
<td>0.85(2)</td>
<td>2.57(7)</td>
<td>3.127(8)</td>
<td>124(7)</td>
</tr>
<tr>
<td>O(20)-H(10)...O(16)#7</td>
<td>0.85(2)</td>
<td>2.45(4)</td>
<td>3.219(9)</td>
<td>151(7)</td>
</tr>
<tr>
<td>O(12)-H(7)...O(18)</td>
<td>0.84(2)</td>
<td>2.24(5)</td>
<td>2.973(5)</td>
<td>147(8)</td>
</tr>
<tr>
<td>O(20)-H(9)...O(21)#8</td>
<td>0.85(2)</td>
<td>2.12(5)</td>
<td>2.938(9)</td>
<td>163(14)</td>
</tr>
<tr>
<td>O(12)-H(8)...O(20)</td>
<td>0.84(2)</td>
<td>1.81(2)</td>
<td>2.632(8)</td>
<td>169(6)</td>
</tr>
<tr>
<td>O(2)-H(3)...O(12)#5</td>
<td>0.85(2)</td>
<td>2.00(2)</td>
<td>2.842(5)</td>
<td>171(5)</td>
</tr>
<tr>
<td>O(19)-H(11)...O(13)</td>
<td>0.83(2)</td>
<td>1.99(2)</td>
<td>2.816(5)</td>
<td>170(7)</td>
</tr>
<tr>
<td>O(15)-H(1)...O(7)</td>
<td>0.84(2)</td>
<td>2.03(5)</td>
<td>2.751(5)</td>
<td>143(6)</td>
</tr>
<tr>
<td>O(6)-H(6)...O(16)#7</td>
<td>0.85(2)</td>
<td>1.96(2)</td>
<td>2.799(5)</td>
<td>173(6)</td>
</tr>
<tr>
<td>O(15)-H(2)...O(19)#9</td>
<td>0.83(2)</td>
<td>2.09(3)</td>
<td>2.885(5)</td>
<td>160(6)</td>
</tr>
<tr>
<td>O(6)-H(5)...O(5)#4</td>
<td>0.86(2)</td>
<td>1.88(3)</td>
<td>2.714(5)</td>
<td>166(6)</td>
</tr>
<tr>
<td>O(19)-H(12)...O(4)#10</td>
<td>0.84(2)</td>
<td>1.92(3)</td>
<td>2.739(5)</td>
<td>164(7)</td>
</tr>
<tr>
<td>O(17)-H(17A)...O(19)#6</td>
<td>0.82</td>
<td>1.88</td>
<td>2.673(6)</td>
<td>163.3</td>
</tr>
<tr>
<td>O(13)-H(13A)...O(14)#8</td>
<td>0.82</td>
<td>1.80</td>
<td>2.550(4)</td>
<td>150.9</td>
</tr>
<tr>
<td>O(9)-H(15)...O(21)#11</td>
<td>0.82</td>
<td>1.76</td>
<td>2.563(5)</td>
<td>164.7</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,y+1/2,-z+1/2 #2 -x,y+1/2,-z+1/2 #3 -x+1,y+1/2,-z+1/2
#4 -x-1,y-1/2,-z+1/2 #5 -x,y-1/2,-z+1/2 #6 -x+1,y-1/2,-z+1/2
#7 -x+1,-y,-z+1 #8 x,-y+1/2,z+1/2 #9 x-1,-y+1/2,z-1/2
#10 -x+2,-y,-z+1 #11 x-1,-y+1/2,z+1/2