Supplementary Information

for

Incorporation of single-walled aluminosilicate nanotubes for the control of crystal size and porosity of zeolitic imidazolate framework-L

An-Chih Yang, Ting-Yu Wang, Chi-An Dai and Dun-Yen Kang*

a Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
b Electron Microscope Unit of Instrument Center, National Taiwan University, Taipei, Taiwan

No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

* E-mail: dunyen@ntu.edu.tw
Fig. S1. High-magnification (a) SEM and (b) TEM images of AlSiNT@ZIF-L. The red arrows indicate the location of AlSiNTs.
Fig. S2. Experimental XRD pattern of AlSiNT@ZIF-L(1.0%) and simulated XRD patterns of 2-by-2 AlSiNT bundles and hexagonally packed AlSiNTs.
Fig. S3. FT-IR spectra of AlSiNT@ZIF-L(1.0%), AlSiNT and ZIF-L
Fig. S4. XRD patterns of various ZIF-L/AlSiNT composites
Fig. S5. SEM images of pure ZIF-L synthesized under various molar Zn-to-H$_2$O ratios: (a) 1:2286 (b) 1:1143 (c) 1:592 and (d) 1:190.
Fig. S6. Powder XRD patterns of pure ZIF-L synthesized under various molar Zn-to-H$_2$O ratios
Fig. S7. Powder XRD patterns of AlSiNT, ZIF-8, and the product of our attempt at synthesizing AlSiNT@ZIF-8(1.0%).
Table S1 Deduced properties from nitrogen physisorption isotherms

<table>
<thead>
<tr>
<th></th>
<th>BET surface area (m2/g)</th>
<th>Pore volume (cm3/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIF-L</td>
<td>7.25</td>
<td>0.015</td>
</tr>
<tr>
<td>AlSiNT</td>
<td>152</td>
<td>0.024</td>
</tr>
<tr>
<td>AlSiNT@ZIF-L(1.0%)</td>
<td>193</td>
<td>0.183</td>
</tr>
</tbody>
</table>