Band gap narrowing in nitrogen-doped La$_2$Ti$_2$O$_7$
predicated by density-functional theory calculations

Junying Zhanga, Wenqiang Danga, Zhimin Aob, Scott K. Cushingc and Nianqiang Wu*c

aDepartment of Physics, Beihang University, Beijing 100191, China.
E-mail: zjy@buaa.edu.cn (J.Y. Zhang); Tel: +86-10-82315351; Fax: +86-10-82317931.

bCenter for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia

cDepartment of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA. E-mail: nick.wu@mail.wvu.edu, Tel: +1-304-293-3326

Fig.S1 DOS (a) and band structure (b) of La$_2$Ti$_2$O$_7$ with the N$_s$ defect calculated using the conventional DFT. The dash line annotates the Fermi level.
Fig. S2 Defect formation energy (E(eV)) when Ns co-exists with Ti. A plot as a function of chemical potentials of Ti(μ_{Ti} - μ_{Ti}(bulk)) and O(μ_{O} - μ_{O}(gas)). The colored lines show how the defect formation energy varies with the chemical potentials.

The heat of formation of La$_2$Ti$_2$O$_7$ is expressed as follows:

$$\Delta = E_H - 2\mu_{La(bulk)} - 2\mu_{Ti(bulk)} - 7\mu_{O(gas)} \quad (s1)$$

$\mu_{O(gas)}$ is determined by the energy of one oxygen molecule, i.e., $\mu_{O} = \mu_{O(gas)} = 1/2\mu_{O_2}$. μ_{La} and μ_{Ti} were obtained by the energy of the bulk metal. In a non-equilibrium process, the atomic chemical potential should be smaller than that of the corresponding elements in their most stable forms. In addition, the Δ value is negative for stable materials. Therefore, μ_{O}, μ_{Ti}, μ_{La} satisfy:

$$\Delta + 7\mu_{O(gas)} \leq 7\mu_{O} \leq 7\mu_{O(gas)} \quad (s2a)$$
$$\Delta + 2\mu_{Ti(bulk)} \leq 2\mu_{Ti} \leq 2\mu_{Ti(bulk)} \quad (s2b)$$
$$\Delta + 2\mu_{La(bulk)} \leq 2\mu_{La} \leq 2\mu_{La(bulk)} \quad (s2c)$$

According to formulas (s2a) and (1) in the main text, we can get the relation between μ_{O}, μ_{Ti} and E_{form}, plotted as a function of $\mu_{Ti} - \mu_{Ti(bulk)}$ and $\mu_{O} - \mu_{O(gas)}$ as shown in Fig. S2 and Fig. S3.
Fig. S3 Formation energy of point-defects in La$_2$Ti$_2$O$_7$: (a) Ns, (b) Ns+Ti$_i$, (c) 2Ns, (d) 2Ns+Vo. \(\mu_O \) is determined by the energy of one nitrogen molecule, i.e., \(\mu_N = \mu_{N(gas)} = \frac{1}{2}\mu_{N_2} \).

Fig. S4 DOS (a) and band structure (b) of La$_2$Ti$_2$O$_7$ with the N$_s$ and the Ti$_i$ defects in a supercell calculated using the conventional DFT. The dash line annotates the Fermi level.
Fig. S5 DOS (a) and band structure (b) of La$_2$Ti$_2$O$_7$ with two N$_s$ and one V$_o$ defects in a supercell calculated using the conventional DFT. The dash line annotates the Fermi level.

Fig. S6 DOS (a) and band structure (b) of La$_2$Ti$_2$O$_7$ with two N$_s$ defects in a supercell calculated using the conventional DFT. The dash line annotates the Fermi level.