Electronic Supplementary Information

Improved sensitization efficiency in Er$^{3+}$ ions and SnO$_2$ nanocrystals co-doped silica thin films

Xiaowei Zhang,a,b Shaobing Lin,a Tao Lin,a,c Pei Zhang,a,d Jun Xu,*a Ling Xua and Kunji Chena

aNational Laboratory of Solid State Microstructures, Department of Electronic Science and Engineering and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

bMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.

cDepartment of Physics, Guangxi University, Nanning, 530004, China.

dHenan Key Lab of Information-based Electrical Appliances, Department of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.

*E-mail: junxu@nju.edu.cn; Fax: +86-25-83594836; Tel: +86-25-83595535.

1. An estimation on the average sizes of SnO$_2$ NCs with the increasing annealing temperature according to the excitation peaks’ position.

As shown in Fig.4, the redshifts of the excitation from band-to-band transition of SnO$_2$ nanocrystals (NCs) can be explained as the enlargement of the average sizes with the increasing annealing temperatures. Based on these excitation peaks, we also estimated the average size of SnO$_2$ NCs using the effective mass theory.$^{[1]}$

$$E_g(R) = E_g(R \to \infty) + \frac{\hbar^2}{8R^2} \times \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right) - \frac{1.8e^2}{4\pi\varepsilon_0 R} + \text{smaller terms},$$

where $E_g(R)$ is the band gap energy of SnO$_2$ NCs, R is the average radius of SnO$_2$ NCs, $E_g(R \to \infty)$ is the band gap energy of SnO$_2$ bulk materials and ε is the relative dielectric constant. m_e^* and m_h^* stand for the effective mass of an electron and a hole, respectively. For SnO$_2$ NCs,

$$E_g(R \to \infty) = 3.60 \, eV, \quad \varepsilon = 14, \quad \varepsilon_0 = 8.85 \times 10^{-12} F/m,$$

$$m_e^* = 0.35 \, m_0, \quad m_h^* \gg m_e^*,$$

where m_0 stands for the free electron mass. Meanwhile, $E_g(R)$ can be calculated as follows,
\[E_g(R) = \frac{1240}{\lambda_{exc}} \]

where \(\lambda_{exc} \) stands for the excitation peak from band-to-band transition of SnO\(_2\) NCs.

As shown in Table 1, it is found that the average sizes of SnO\(_2\) NCs with different annealing temperatures are consistent with the TEM observations.

Table 1S. Band gaps and average sizes of SnO\(_2\) NCs after annealing at different temperatures.

<table>
<thead>
<tr>
<th>Annealing temperature / °C</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>Bulk materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{exc}) / nm</td>
<td>293</td>
<td>300</td>
<td>322</td>
<td>—</td>
</tr>
<tr>
<td>Band gap / eV</td>
<td>4.23</td>
<td>4.13</td>
<td>3.85</td>
<td>3.60</td>
</tr>
<tr>
<td>Average size / nm</td>
<td>2.92</td>
<td>4.22</td>
<td>5.12</td>
<td>—</td>
</tr>
</tbody>
</table>

2. XRD patterns of samples after annealing at 1000°C.

In order to characterize further the formation of SnO\(_2\) NCs, the aged gels were annealed at 1000 °C and then milled into powers for the X-ray diffraction (XRD, using 0.1540562 nm Cu Ka radiation) test.

XRD pattern for corresponding sol-gel powers containing with 20% Sn after annealing at 1000°C is demonstrated in Fig. 1S(a). The pattern shows all the diffraction peaks assigned to tetragonal rutile crystalline phase of the SnO\(_2\) NCs (JCPDS No. 41-1445), which is consistent with the TEM observation results. As shown in Fig. 1S(b), the related XRD spectra express a slight shifting, revealing the fact that Er\(^{3+}\) ions should be very likely incorporated in the D\(_{2h}\) lattice site of Sn\(^{4+}\).
Fig.1S (a) XRD pattern of the 20% Sn doped SiO$_2$ powder samples after annealing 1000 °C. (b) Comparison of XRD spectra of pure and Er$^{3+}$-doped SnO$_2$ NCs silica thin films.

Reference