Supplementary Information - A Study of the Relationship between Water and Anions of the Hofmeister Series Using Pressure Perturbation Calorimetry

Jordan W. Bye and Robert J. Falconer*

Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, England

* To whom the correspondence should be addressed. Telephone +44 114 2228253, Fax +44 114 2227501 Email r.j.falconer@sheffield.ac.uk

The calculated values for the coefficient of thermal expansion determined using the equation derived in Lin et. al. 2002 using the conventional apparent partial volume (\bar{V}) values from Millero 1971 and experimental results for 100 mM salt solutions are shown in Figures S1. The coefficient of thermal expansion for sodium chloride, sodium bromide, sodium iodide, sodium thiocyanate and sodium perchlorate are similar but the two sodium salts with high charge density anions sodium fluoride and disodium sulphate have markedly different calculated coefficients of thermal expansion. For the two high charge density salts sodium fluoride and disodium sulphate, the conventional apparent partial volume (\bar{V}) values differ significantly from the intrinsic volumes (V_{int}), as shown in Figure S2. It was the observation that the coefficient of thermal expansion calculated for high charge density anions was problematic that led the authors to develop the alternative mathematical approach where the hydration layer was treated as a discrete population of water with an average volume and coefficient of thermal expansion. This idea is supported by a range of analytical methodologies that suggest that water in the first and second layer around an ion is significantly different to pure or bulk water, see the main paper.

Figure S1: Apparent thermal expansion coefficient for a pressure increase (1 to 5 bar) from 7 °C – 92 °C for 100 mM disodium sulphate (■), sodium fluoride (☐), sodium chloride (•), sodium bromide (†), sodium iodide (□), sodium thiocyanate (–) and sodium perchlorate (▲). The sample size was 300 μL. Using PPC data and conventional apparent partial volume (V_0) (from Millero 1971)2
Figure S2: The conventional apparent partial volume (V_o) (from Millero 1971)\(^2\) versus intrinsic volume (V_{int}) calculated from the ionic radii (from Marcus 1997)\(^3\) of disodium sulphate (■), sodium chloride (□), sodium bromide (¶), sodium iodide (‖) and sodium perchlorate (□).

References