Controllable fabrication of immobilized ternary CdS/Pt-TiO$_2$ heteronanostructures toward high-performance visible-light driven photocatalysis

Honge Wanga, Jun Lva, Huazhen Gaoa, Guangqing Xua, Dongmei Wanga, Xinyi Zhangb, Zhong Chenc, Zhixiang Zhenga, Yucheng Wua,d

aSchool of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China; E-mail: lvjun@hfut.edu.cn ycwu@hfut.edu.cn

bSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia

cSchool of Materials Science and Engineering, Nanyang Technological University, Singapore

dKey Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
Synthetic procedure and Photocatalytic activity test of CdS/Pt/TiO₂ NTAs

Preparation of TiO₂ nanotube arrays

The anodization process was performed in a two-electrode electrochemical cell with Ti foils as the anode and a piece of highly pure graphite as the cathode. The Ti foils were anodized at 60 V for 10 h in the electrolyte containing NH₄F (0.1 M), ethylene glycol and water (10 vol%). After anodization, the obtained samples were ultrasonically cleaned in ethylene glycol for 90 s to remove the debris and other impurities, then dried in air. Finally, the samples were annealed in air at 500°C for 2 h.

Deposition of Pt, CdS NPs

Pt/TiO₂ NTAs were prepared by photoreduction deposition method. First, TiO₂ NTAs were immersed in a 14 ml aqueous solution for 2 h which contained 7 ml methanol and H₂PtCl₆·6H₂O with different concentrations. Then the samples were bubbled in nitrogen for 30 min to remove the dissolved oxygen. After that, the samples were illuminated by a 500 W Mercury lamp for 30 min at room temperature. Finally, the samples were rinsed with deionized water and dried in oven at 40°C for 2 h.

CdS/TiO₂ NTAs and CdS/Pt/TiO₂ NTAs were prepared by chemical bath deposition method (CBD). First, TiO₂ NTAs were immersed in a 0.02 M cadmium chloride aqueous solution for 30 s, rinsed with deionized water for 60 s and then in a 0.02 M sodium sulfide aqueous solution for 30 s, followed with additional rinse in deionized water for 60 s. The two-step immersing procedure was termed as one CBD cycle. This deposition cycle was repeated for 13 times. Finally, the modified samples were dried in an oven at 40°C for 2 h and then were annealed at 350°C for 2 h in Argon atmosphere with the heating rate of 1°C·min⁻¹.

Photocatalytic activity test

The photocatalytic activities of as-prepared samples under visible light were tested by an XPA-7 photochemical reactor (Nanjing Xujiang Machine-electronic Plant, China). Methyl Orange (MO) aqueous solution was used as a model pollutant to be degraded. A 250 W metal halide lamp with a UV cut-off filter was used as the resource of visible light (λ>420 nm), the photoreactor was cooled by circulating water during the photodegradation process. The volume of MO aqueous solution was 12 ml with the concentration of 10 mg/L, and the size of sample was 1.5×3 cm.
Fig. S1. Schematics of the fabrication process of CdS/Pt/TiO$_2$ NTAs

Fig. S2. Schematic diagram of XPA-7 photochemical reactor
Fig. S3. FESEM morphologies of CdS/Pt/TiO2 NTAs prepared with different H2PtCl6 concentrations (a,b 1 mmol·L⁻¹; c,d 2 mmol·L⁻¹; e,f 3 mmol·L⁻¹), 13 deposition cycles of CdS
Fig. S4. FESEM morphology of Pt/TiO$_2$ NTAs prepared with 1 mmol·L$^{-1}$H$_2$PtCl$_6$

Fig. S5. FESEM morphologies of CdS/Pt/TiO$_2$ NTAs (CdS deposition cycle: 13 cycles; the concentration of H$_2$PtCl$_6$: 1 mmol·L$^{-1}$)
Fig. S6. FESEM morphologies of CdS/Pt/TiO$_2$ NTAs (CdS deposition cycle: 13 cycles; the concentration of H$_2$PtCl$_6$: 4 mmol·L$^{-1}$)

Fig. S7. FESEM morphologies of CdS/Pt/TiO$_2$ NTAs (CdS deposition cycle: 13 cycles; the concentration of H$_2$PtCl$_6$: 1 mmol·L$^{-1}$) after being reused for different times (a: 5 times; b: 10 times; c: 15 times; d: 20 times).