SUPPLEMENTARY MATERIALS

The influence of phosphorothioate on charge migration in single and double stranded DNA. A theoretical approach.

B.T. Karwowski
Table 1SM. Dihedral angels α (O3'-P-O5'-C5'), ξ (C3'-O3' -P-O5') in [°] and hydrogen bonds lengths in [Å] of d[GpG] and [GpG][CpC] (X= O or S) systems in their neutral, radical cation and radical anion forms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C3'-O3' -P-O5'</td>
<td>O3'-P-O5'-C5'</td>
<td>C3'-O3' -P-O5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTRAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO X=O</td>
<td>-90.54</td>
<td>-71.71</td>
<td>-164.83</td>
</tr>
<tr>
<td>[SP] X=S</td>
<td>-119.06</td>
<td>-46.44</td>
<td>-161.95</td>
</tr>
<tr>
<td>[RP] X=S</td>
<td>-75.91</td>
<td>-86.27</td>
<td>-159.75</td>
</tr>
<tr>
<td>Radical CATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO X=O</td>
<td>-102.20</td>
<td>-64.39</td>
<td>-152.38</td>
</tr>
<tr>
<td>[SP] X=S</td>
<td>-133.37</td>
<td>-47.59</td>
<td>-68.77</td>
</tr>
<tr>
<td>[RP] X=S</td>
<td>171.92</td>
<td>-95.35</td>
<td>-160.42</td>
</tr>
<tr>
<td>Radical ANION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO X=O</td>
<td>213.15</td>
<td>-47.52</td>
<td>-175.72</td>
</tr>
<tr>
<td>[SP] X=S</td>
<td>-128.99</td>
<td>15.15</td>
<td>-61.05</td>
</tr>
<tr>
<td>[RP] X=S</td>
<td>-79.92</td>
<td>-79.90</td>
<td>-156.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Hydrogen bonds length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O6--N4 (HB1)</td>
</tr>
<tr>
<td></td>
<td>sG:::C3</td>
</tr>
<tr>
<td>Ref.</td>
<td>2.92/3.00</td>
</tr>
<tr>
<td>NEUTRAL</td>
<td>2.780</td>
</tr>
<tr>
<td>[SP] X=S</td>
<td>2.781</td>
</tr>
<tr>
<td>[RP] X=S</td>
<td>2.777</td>
</tr>
<tr>
<td>Radical CATION</td>
<td>2.828</td>
</tr>
<tr>
<td>[SP] X=S</td>
<td>2.825</td>
</tr>
<tr>
<td>[RP] X=S</td>
<td>2.827</td>
</tr>
<tr>
<td>Radical ANION</td>
<td>2.973</td>
</tr>
<tr>
<td>[SP] X=S</td>
<td>2.958</td>
</tr>
<tr>
<td>[RP] X=S</td>
<td>2.982</td>
</tr>
</tbody>
</table>

Table 2SM. The differences in hydrogen bonds length in $[\mathcal{R}_P] \ d[G_{PS}G]^*[C_{PS}C]$, $[\mathcal{S}_P] \ d[G_{PS}G]^*[C_{PS}C]$ and $d[G_{PS}G]^*[C_{PS}C]$, between their suitable neutral form and radical anion or cation ones, given in $[\text{Å}]$.

<table>
<thead>
<tr>
<th>System</th>
<th>$3\beta^G:::C^3\beta$</th>
<th>$5\beta^G:::C^3\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HB1</td>
<td>HB2</td>
</tr>
<tr>
<td>Radical Cation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO $X=O$</td>
<td>-0.146</td>
<td>0.12</td>
</tr>
<tr>
<td>$[\mathcal{R}_P] X=S$</td>
<td>-0.161</td>
<td>0.111</td>
</tr>
<tr>
<td>$[\mathcal{S}_P] X=S$</td>
<td>-0.087</td>
<td>0.108</td>
</tr>
<tr>
<td>Radical Anion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO $X=O$</td>
<td>-0.042</td>
<td>0.039</td>
</tr>
<tr>
<td>$[\mathcal{R}_P] X=S$</td>
<td>-0.085</td>
<td>0.034</td>
</tr>
<tr>
<td>$[\mathcal{S}_P] X=S$</td>
<td>-0.039</td>
<td>0.061</td>
</tr>
</tbody>
</table>
Table 3SM. Charge, dipole moment and selected distances of d[GxG] (X= O or S) systems in their neutral, radical cation and radical anion forms.

<table>
<thead>
<tr>
<th>System</th>
<th>3'-sugar</th>
<th>3'-guanine</th>
<th>5'-sugar</th>
<th>5'-guanine</th>
<th>HXPO₃</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO X=O</td>
<td>0.3158</td>
<td>-0.1055</td>
<td>0.2395</td>
<td>-0.2120</td>
<td>-0.2384</td>
<td>11.41</td>
</tr>
<tr>
<td>[Rₓ] X=S</td>
<td>0.3209</td>
<td>-0.1082</td>
<td>0.2580</td>
<td>-0.2079</td>
<td>-0.2625</td>
<td>8.01</td>
</tr>
<tr>
<td>[Sₓ] X=S</td>
<td>0.3159</td>
<td>-0.0997</td>
<td>0.2486</td>
<td>-0.2033</td>
<td>-0.2608</td>
<td>11.82</td>
</tr>
<tr>
<td>Radical CATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO X=O</td>
<td>0.3773</td>
<td>-0.0611</td>
<td>0.3720</td>
<td>0.5925</td>
<td>-0.2808</td>
<td>8.56</td>
</tr>
<tr>
<td>[Rₓ] X=S</td>
<td>0.2994</td>
<td>-0.0153</td>
<td>0.2688</td>
<td>0.6777</td>
<td>-0.2307</td>
<td>7.38</td>
</tr>
<tr>
<td>[Sₓ] X=S</td>
<td>0.3278</td>
<td>-0.0154</td>
<td>0.3660</td>
<td>0.6081</td>
<td>-0.2867</td>
<td>8.25</td>
</tr>
<tr>
<td>Radical ANION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO X=O</td>
<td>-0.5846</td>
<td>-0.0602</td>
<td>-0.1680</td>
<td>-0.0106</td>
<td>-0.1770</td>
<td>18.41</td>
</tr>
<tr>
<td>[Rₓ] X=S</td>
<td>0.1274</td>
<td>-0.1675</td>
<td>0.1017</td>
<td>-0.2146</td>
<td>-0.8478</td>
<td>11.52</td>
</tr>
<tr>
<td>[Sₓ] X=S</td>
<td>0.1292</td>
<td>-0.0781</td>
<td>0.0637</td>
<td>-0.2584</td>
<td>-0.8559</td>
<td>15.15</td>
</tr>
</tbody>
</table>

Selected bonds distances in Å:

<table>
<thead>
<tr>
<th>System</th>
<th>O5'-P</th>
<th>C1'-N9</th>
<th>O3'-P</th>
<th>C1'-N9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>1.590</td>
<td>1.452</td>
<td>1.597</td>
<td>1.435</td>
</tr>
<tr>
<td>Cation</td>
<td>1.601</td>
<td>1.457</td>
<td>1.601</td>
<td>1.450</td>
</tr>
<tr>
<td>Anion</td>
<td>1.608</td>
<td>1.452</td>
<td>1.617</td>
<td>1.454</td>
</tr>
<tr>
<td>[Rₓ] X=S</td>
<td>1.612</td>
<td>1.452</td>
<td>1.594</td>
<td>1.435</td>
</tr>
<tr>
<td>Cation</td>
<td>1.605</td>
<td>1.451</td>
<td>1.608</td>
<td>1.455</td>
</tr>
<tr>
<td>Anion</td>
<td>1.691</td>
<td>1.454</td>
<td>1.688</td>
<td>1.450</td>
</tr>
<tr>
<td>[Sₓ] X=S</td>
<td>1.608</td>
<td>1.445</td>
<td>1.595</td>
<td>1.433</td>
</tr>
<tr>
<td>Cation</td>
<td>1.600</td>
<td>1.451</td>
<td>1.613</td>
<td>1.460</td>
</tr>
<tr>
<td>Anion</td>
<td>1.717</td>
<td>1.448</td>
<td>1.672</td>
<td>1.469</td>
</tr>
</tbody>
</table>
Table 4 SM. Atomic charge [au], dipole moment [D] and selected distances [Å] of d(GpXG)*[CpXC] \(X=O\) or S systems in their neutral, radical cation and radical anion forms.

<table>
<thead>
<tr>
<th>System</th>
<th>(3')-sugar</th>
<th>(3')-guanine</th>
<th>(5')-sugar</th>
<th>(5')-guanine</th>
<th>(\text{O=PH})</th>
<th>(3')-cytosine</th>
<th>(5')-sugar</th>
<th>(5')-cytosine</th>
<th>(\text{O=POH})</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PO} X=O)</td>
<td>0.2140</td>
<td>-0.1843</td>
<td>0.2074</td>
<td>-0.1800</td>
<td>-0.2610</td>
<td>0.0028</td>
<td>0.2472</td>
<td>0.1761</td>
<td>0.0255</td>
<td>-0.2499</td>
</tr>
<tr>
<td>([\text{RP}] X=S)</td>
<td>0.2341</td>
<td>-0.1716</td>
<td>0.1902</td>
<td>-0.1737</td>
<td>-0.2788</td>
<td>0.0038</td>
<td>0.2506</td>
<td>0.1752</td>
<td>0.0259</td>
<td>-0.2496</td>
</tr>
<tr>
<td>([\text{SP}] X=S)</td>
<td>0.2165</td>
<td>-0.1817</td>
<td>0.2168</td>
<td>-0.1814</td>
<td>-0.2677</td>
<td>-0.0060</td>
<td>0.2617</td>
<td>0.1956</td>
<td>0.0160</td>
<td>-0.2719</td>
</tr>
<tr>
<td>Radical CATION</td>
<td> </td>
</tr>
<tr>
<td>(\text{PO} X=O)</td>
<td>0.3035</td>
<td>0.4016</td>
<td>0.2435</td>
<td>-0.1567</td>
<td>-0.2248</td>
<td>0.0409</td>
<td>0.2707</td>
<td>0.2150</td>
<td>0.1373</td>
<td>-0.2317</td>
</tr>
<tr>
<td>([\text{RP}] X=S)</td>
<td>0.3256</td>
<td>0.3891</td>
<td>0.2222</td>
<td>-0.1084</td>
<td>-0.2473</td>
<td>0.0355</td>
<td>0.2847</td>
<td>0.2321</td>
<td>0.1181</td>
<td>-0.2515</td>
</tr>
<tr>
<td>([\text{SP}] X=S)</td>
<td>0.2944</td>
<td>0.3735</td>
<td>0.2871</td>
<td>-0.1771</td>
<td>-0.2105</td>
<td>0.0391</td>
<td>0.2717</td>
<td>0.2154</td>
<td>0.1382</td>
<td>-0.2318</td>
</tr>
<tr>
<td>Radical ANION</td>
<td> </td>
</tr>
<tr>
<td>(\text{PO} X=O)</td>
<td>0.2103</td>
<td>-0.1936</td>
<td>0.1746</td>
<td>-0.2894</td>
<td>-0.3025</td>
<td>-0.5250</td>
<td>0.1470</td>
<td>0.1562</td>
<td>-0.0654</td>
<td>-0.3139</td>
</tr>
<tr>
<td>([\text{RP}] X=S)</td>
<td>0.2246</td>
<td>-0.2050</td>
<td>0.1637</td>
<td>-0.2948</td>
<td>-0.2899</td>
<td>-0.5268</td>
<td>0.1521</td>
<td>0.1430</td>
<td>-0.0575</td>
<td>-0.3105</td>
</tr>
<tr>
<td>([\text{SP}] X=S)</td>
<td>0.1768</td>
<td>-0.2397</td>
<td>0.2016</td>
<td>-0.2727</td>
<td>-0.2585</td>
<td>-0.5343</td>
<td>0.1458</td>
<td>0.1574</td>
<td>-0.0537</td>
<td>-0.3129</td>
</tr>
</tbody>
</table>

Selected bonds distances in [Å]

<table>
<thead>
<tr>
<th>System</th>
<th>(\text{PO} X=O)</th>
<th>(\text{C1'-N9})</th>
<th>(\text{O5'-P})</th>
<th>(\text{C1'-N9})</th>
<th>(\text{O5'-P})</th>
<th>(\text{C1'-N1})</th>
<th>(\text{O5'-P})</th>
<th>(\text{C1'-N1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>1.594</td>
<td>1.439</td>
<td>1.584</td>
<td>1.438</td>
<td>1.591</td>
<td>1.451</td>
<td>1.587</td>
<td>1.443</td>
</tr>
<tr>
<td>Cation</td>
<td>1.597</td>
<td>1.462</td>
<td>1.587</td>
<td>1.443</td>
<td>1.594</td>
<td>1.458</td>
<td>1.591</td>
<td>1.453</td>
</tr>
<tr>
<td>Anion</td>
<td>1.591</td>
<td>1.433</td>
<td>1.581</td>
<td>1.430</td>
<td>1.589</td>
<td>1.421</td>
<td>1.586</td>
<td>1.442</td>
</tr>
<tr>
<td>S_{p} X=O</td>
<td>1.605</td>
<td>1.438</td>
<td>1.593</td>
<td>1.436</td>
<td>1.592</td>
<td>1.451</td>
<td>1.588</td>
<td>1.443</td>
</tr>
<tr>
<td>S_{p} X=S</td>
<td>1.614</td>
<td>1.460</td>
<td>1.600</td>
<td>1.437</td>
<td>1.593</td>
<td>1.457</td>
<td>1.591</td>
<td>1.453</td>
</tr>
<tr>
<td>S_{p} X=S</td>
<td>1.603</td>
<td>1.432</td>
<td>1.591</td>
<td>1.428</td>
<td>1.591</td>
<td>1.421</td>
<td>1.590</td>
<td>1.443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>(\text{PO} X=O)</th>
<th>(\text{C1'-N9})</th>
<th>(\text{O5'-P})</th>
<th>(\text{C1'-N9})</th>
<th>(\text{O5'-P})</th>
<th>(\text{C1'-N1})</th>
<th>(\text{O5'-P})</th>
<th>(\text{C1'-N1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>1.597</td>
<td>1.439</td>
<td>1.591</td>
<td>1.438</td>
<td>1.592</td>
<td>1.451</td>
<td>1.588</td>
<td>1.443</td>
</tr>
<tr>
<td>Cation</td>
<td>1.611</td>
<td>1.473</td>
<td>1.587</td>
<td>1.450</td>
<td>1.593</td>
<td>1.459</td>
<td>1.591</td>
<td>1.454</td>
</tr>
<tr>
<td>Anion</td>
<td>1.596</td>
<td>1.445</td>
<td>1.589</td>
<td>1.444</td>
<td>1.590</td>
<td>1.423</td>
<td>1.585</td>
<td>1.443</td>
</tr>
</tbody>
</table>
Figure 1SM. Visualisation of spatial geometry comparison of \(d[G_5G] \) (gray), \([S_5] d[G_5G] \) (green) and \([R_5] d[G_5G] \) (yellow) in their neural forms, optimized at M06-2X/6-31+G** level of theory. \(G_{3\prime} - 3\prime\)-end guanine, \(G_{5\prime} - 5\prime\)-end guanine.

Figure 2SM. Visualisation of spatial geometry comparison of \(d[G_5G] \) (gray), \([S_5] d[G_5G] \) (violet) and \([R_5] d[G_5G] \) (yellow) in their radical cation forms, optimized at M06-2X/6-31+G** level of theory. \(G_{3\prime} - 3\prime\)-end guanine, \(G_{5\prime} - 5\prime\)-end guanine.
Figure 3S. Visualisation of spatial geometry comparison of dG5G (violet), [S] dG5G (green) and [R] dG5G (yellow) in their radical anion forms, optimized at M06-2X/6-31+G** level of theory. G3’ – 3’-end guanine, G5’ – 5’-end guanine.
Figure 4SM. HOMO and LUMO visualisation in neutral forms of d[G₆₃G], {SP} d[G₆₅G] and {RP} d[G₆₅G], calculated at M06-2X/6-31+G** level of theory. G₃₈ – 3₈-end guanie, G₅₅ – 5₅-end guanie.
Figure S5M. HOMO and LUMO visualisation in neutral forms of $d[G_{PO}G]^*d[C_{PO}C]$, $[S_p] d[G_{PS}G]^*d[C_{PO}C]$ and $[R_p] d[G_{PS}G]^*d[C_{PO}C]$, calculated at M06-2X/6-31+G** level of theory. G3′ – 3′-end guanine, G5′ – 5′-end guanine, C3′ – 3′-end cytosine, C5′ – 5′-end cytosine.
Figure 6SM. Hirshfield spin density distribution, summed into heavy atoms, visualisation of radical cation forms of d(GpG), [S_p] d(GpG) and [R_p] d(GpG), calculated at M06-2X/6-31+G** level of theory. G38'-38'-end guanine, G58'–58'-end guanine.

Figure 7SM. Hirshfield atomic spin density distribution, summed into heavy atoms, calculated at M06-2X/6-31+G** level of theory. A) spin distribution on d(GpG) molecules (X=O or S), B) spin distribution on d(GpG) [S_p] d(GpG) (X=O or S), PO – phosphate internucleotide bond, R_p – 5 diasteromer of phosphorothioate internucleotide bond, G38' – 3'-end guanine, C3' – 3'-end cytosine, C58' – 5'-end cytosine, G58' – 5'-end guanine.
Figure 8SM. Hirshfeld spin density distribution, summed into heavy atoms, visualisation of radical cation forms of \(d[GpG]d[GpC] \), \([S_p] \) \(d[GpG]d[CpC] \) and \([R_p] \) \(d[GpG]d[CpC] \), calculated at M06-2X/6-31+G** level of theory. \(G3\beta \) – 3\beta-end guanie, \(G5\beta \) – 5\beta-end guanie, \(C3\beta \) – 3\beta-end cytosine, \(C5\beta \) – 5\beta-end cytosine.

Figure 9SM. The Hirshfeld spin density visualisation of radical anion forms of \(d[GpG] \), \([S_p] \) \(d[GpG] \) and \([R_p] \) \(d[GpG] \), calculated at M06-2X/6-31+G** level of theory. \(G3\beta \) – 3\beta-end guanie, \(G5\beta \) – 5\beta-end guanie.
Figure 10SM. Visualisation of spatial geometry comparison of \(d[G_{PO}G]*d[C_{PO}C]\) (violet, \(X=O\)), \([S]\) \(d[G_{PO}G]*d[C_{PO}C]\) (green, \(X=S\)) and \([R]\) \(d[G_{PO}G]*d[C_{PO}C]\) (yellow, \(X=S\)), in their: A) radical A cation, C) anion and B) neutral forms, optimized at M06-2X/6-31+G** level of theory. \(G_{3\beta}-3\beta\)-end guanine, \(G_{5\beta}-5\beta\)-end guanine, \(C_{3\beta}-3\beta\)-end cytosine, \(C_{5\beta}-5\beta\)-end cytosine.

Figure 11SM. Hirshfeld spin density distribution, summed into heavy atoms, visualisation of radical anion forms of \(d[G_{PO}G]*d[C_{PO}C]\). [S] \(d[G_{PO}G]*d[C_{PO}C]\) and [R] \(d[G_{PO}G]*d[C_{PO}C]\), calculated at M06-2X/6-31+G** level of theory. \(G_{3\beta}-3\beta\)-end guanine, \(G_{5\beta}-5\beta\)-end guanine, \(C_{3\beta}-3\beta\)-end cytosine, \(C_{5\beta}-5\beta\)-end cytosine.