Supporting Information

Fabrication of Charged Membranes by the Solvent-Assisted Lipid Bilayer (SALB) Formation Method on SiO$_2$ and Al$_2$O$_3$

Seyed R. Tabaei1,2, Setareh Vafaei1,2, Nam-Joon Cho*,1,2,3

1School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
2Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
3School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore

*Corresponding author.

E-mail: njcho@ntu.edu.sg
SI-Fig. 1 Frequency and dissipation response for DOPS containing bilayer formation on SiO$_2$ at pH 5 using vesicle fusion method. Arrows indicate the injection of (1) tris buffer (10mM Tris, 150mM NaCl, pH 7.5), (2) buffer at pH 5 (10mM Tris, 150mM NaCl, pH 5), (3) lipid vesicle mixture in buffer at pH 5 [red curve: PC/PS (4/6), dashed line: PC/PS (9/1)], (4) buffer wash (pH 7.5), (5) BSA in annexin 5A buffer (10mM Tris, 150mM NaCl, 2 mM CaCl$_2$, pH 7.5) and (6) annexin 5A (5 µg/ml).
SI-Fig. 2 Summary of QCM-D frequency and energy dissipation responses corresponding to formation of supported bilayer composed of DOPC/DOEPC produced by vesicle fusion and SALB formation method on (a, b) SiO$_2$ and (c, d) Al$_2$O$_3$.

(a) SiO$_2$

(b) SiO$_2$

(c) Al$_2$O$_3$

(d) Al$_2$O$_3$
SI-Fig. 3 Comparison of nonspecific adsorption of BSA protein to bare and positively charged bilayers-coated Al₂O₃. Negative QCM-D frequency changes upon injection of 0.1 mg/mL BSA indicates protein binding to bilayer defects. The final frequency shift after bilayer formation was set to zero and used as a baseline for frequency.