Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels-Alder reaction

R. Geitnera, J. Kötteritzschb,c, M. Siegmanna, T. W. Bocklitza, M. D. Hagerb,c, U. S. Schubertb,c, S. Gräfea,c, B. Dietzeka,c,d, M. Schmitta and J. Poppa,c,d

a Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.

b Laboratory for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.

c Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.

d Leibniz Institute for Photonic Technology (IPHT) Jena, Albert-Einstein-Str. 9, 07745, Jena, Germany.

E-mail: juergen.popp@uni-jena.de
Figure S1 Experimental FT-Raman spectrum of furfuryl methacrylate (FMA). The spectrum consists of 724 combined single spectra. The resolution is 4 cm$^{-1}$. The spectrum is background corrected using a SNIP algorithm and normalized to the peak at 1503 cm$^{-1}$. Band assignment: 1718 (ν(C=O) methacrylate), 1639 (ν(C=C) methacrylate), 1602 (ν(C=C) furan), 1503 (ν(C=C) furan), 1081 (ν(ring) furan) cm$^{-1}$.
Figure S2 Experimental FT-Raman spectrum of furan protected maleimide methacrylate (MIMA). The spectrum consists of 724 combined single spectra. The resolution is 4 cm$^{-1}$. The spectrum is background corrected using a SNIP algorithm and normalized to the peak at 1772 cm$^{-1}$. Band assignment: 1772 (ν(C=O) maleimide), 1716 (ν(C=O) methacrylate & ν_{as}(C=O) maleimide), 1638 (ν(C=O) methacrylate), 1574 (ν(C=C) maleimide), 655 (π(C-N-C) maleimide) cm$^{-1}$.
Figure S3 Experimental FT-Raman spectrum of furan protected poly(maleimide methacrylate) (P(MIMA)). The spectrum consists of 724 combined single spectra. The resolution is 4 cm$^{-1}$. The spectrum is background corrected using a SNIP algorithm and normalized to the peak at 1775 cm$^{-1}$. Band assignment: 1775 (ν$_s$(C=O) maleimide), 1727 (ν(C=O) methacrylate & ν$_s$(C=O) maleimide), 1571 (ν(C=C) maleimide), 653 (τ(C-N-C) maleimide) cm$^{-1}$.
Figure S4 Experimental FT-Raman spectrum copolymer P(LMA-co-FMA-co-MIMA) with monomer ratio of 1:1:1 (P1). The spectrum consists of 72 combined single spectra. The resolution is 4 cm\(^{-1}\). The spectrum is background corrected using a SNIP algorithm and normalized to the peak at 1772 cm\(^{-1}\). Band assignment: 1772 (\(\nu(C=O)\) maleimide), 1716 (\(\nu(C=O)\) methacrylate & \(\nu_{as}(C=O)\) maleimide), 1501 (\(\nu(C=C)\) furan) cm\(^{-1}\).
Figure S5 Asynchronous 2D Raman correlation spectra of P(LMA-co-FMA-co-MIMA) with monomer ratio of 1:1:1 (P1) between 110 and 160 °C (in steps of 10 °C) in the wavenumber region 500 - 2000 cm\(^{-1}\). The spectrum plotted at the top and the left is the respective reference Raman spectrum at 110 °C. Red colour indicates positive peaks, while blue shows negative ones.