SUPPORTING INFORMATION

Relaxation dynamics of helium nanodroplets after photodissociation of a dopant homonuclear diatomic molecule.

The case of Cl\textsubscript{2}@4He\textsubscript{N}

Arnau Vilàa, Miguel Gonzáleza,* and Ricardo Mayolb,*

a Departament Química Física i IQTC, Universitat de Barcelona, c/ Martí i Franquès, 1, 08028 Barcelona, Spain.
b Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, c/ Martí i Franquès, 1, 08028 Barcelona, Spain.

CONTENTS

Figure S1. Time evolution of the energy of the nanodroplets in the time interval 0-10 ps \hspace{1cm} page 3

Figure S2. Time evolution of the percentage of 4He atoms in the nanodroplets in the time interval 0-150 ps \hspace{1cm} page 3

Figure S3. Time evolution of the inverse of the excitation energy per 4He atom for the nanodroplets in the high excitation regime \hspace{1cm} page 4

Figure S4. Time evolution of the excitation energy per 4He atom in the time interval 0-500 ps \hspace{1cm} page 4
Figure S5. Helium density for the relaxing helium nanodroplet with $N_0=100$ at $t=3.0$ and 518.7 ps

Figure S6. Time evolution of the energy per 4He atom in the nanodroplets after the B \leftarrow X excitation of Cl$_2$

Figure S7. Time evolution of the energy per 4He atom in the nanodroplets for two different initial times

Figure S8. Time evolution of the inverse of the excitation energy per 4He atom in the nanodroplets for two different initial times

Movie 1. Time evolution of the helium density for the relaxing helium nanodroplet with $N_0=100$ within the 0.4-23 ps time interval

Movie 2. The same as movie 1 but for the 100-123 ps time interval

Movie 3. The same as movie 1 but for the 550-570 ps time interval

Movie 4. Time evolution of the helium density for the relaxing helium nanodroplet with $N_0=500$ within the 0.5-22 ps time interval

Movie 5. The same as movie 4 but for the 100-120 ps time interval

Movie 6. The same as movie 4 but for the 493-517 ps time interval
Figure S1. Time evolution of the energy of the nanodroplets in the time interval 0-10 ps, for nanodroplets of different sizes.

Figure S2. Time evolution of the percentage of 4He atoms in the nanodroplets in the time interval 0-150 ps, for nanodroplets of different sizes.
Figure S3. Time evolution of the inverse of the excitation energy per ^4He atom for different nanodroplets in the high excitation regime.

Figure S4. Time evolution of the excitation energy per ^4He atom for nanodroplets of different sizes.
Figure S5. Helium density (radial i.e., along the z axis), xy plane and xz plane densities) for the relaxing helium nanodroplet with $N_0=100$ at $t=3.0$ ps (left) and $t=518.7$ ps (right).
Figure S6. Time evolution of the energy per 4He atom for nanodroplets of different sizes: $N_0=50$ (red), 100 (blue), 200 (yellow), 300 (purple) and 500 (green). Here $t = 0$ ps corresponds to the B ← X electronic excitation of the Cl$_2$ molecule.
Figure S7. Time evolution of the energy per \(^4\)He atom for nanodroplets of different sizes: \(N_0=50\) (red), 100 (blue), 200 (yellow), 300 (purple) and 500 (green). For a given color the upper curve corresponds to consider that the origin of time \((t = 0\ \text{ps})\) is the photodissociation time of \(\text{Cl}_2(\text{B})\), while the lower curve corresponds to the origin of time considered in the present work, i.e., to the formation of the products \(X + X^* + [(^4\text{He})_N]^* + \text{(N-N')}\) \(^4\)He (cf. eq (2) of the paper).
Figure S8. Time evolution of the inverse of the excitation energy per 4He atom for nanodroplets of different sizes. For a given color the dashed line curve corresponds to consider that the origin of time ($t = 0$ ps) is the photodissociation time of Cl$_2$(B), while the continuous line curve corresponds to the origin of time considered in the present work, i.e., to the formation of the products $X + X^* + [(^4\text{He})_{n'}]^* + (\text{N-N'})^4\text{He}$ (cf. eq (2) of the paper).
Movie 1. Time evolution of the helium density (radial (i.e., along the z axis), xy plane and xz plane densities) for the relaxing helium nanodroplet with $N_0=100$ within the 0.4-23 ps time interval. For the xz plane the density is given in both 2D and 3D representations (in the last case the colours code does not apply and the density value is proportional to the height of the plot). See the AVI video file (3.49 MB) “movie 1 (Cl2-100ini).avi”.

Movie 2. The same as movie 1 but for the 100-123 ps time interval. See the AVI video file (3.67 MB), “movie 2 (Cl2-100mid).avi”.

Movie 3. The same as movie 1 but for the 550-570 ps time interval. See the AVI video file (2.97 MB), “movie 3 (Cl2-100end).avi”.

Movie 4. Time evolution of the helium density for the relaxing helium nanodroplet with $N_0=500$ within the 0.5-22 ps time interval. For the xz plane the density is given in both 2D and 3D representations (in the last case the colours code does not apply and the density value is proportional to the height of the plot). See the AVI video file (3.61 MB), “movie 4 (Cl2-500ini).avi”.

Movie 5. The same as movie 4 but for the 100-120 ps time interval. See the AVI video file (3.25 MB), “movie 5 (Cl2-500mid).avi”.

Movie 6. The same as movie 4 but for the 493-517 ps time interval. See the AVI video file (3.85 MB), “movie 6 (Cl2-500end).avi”.
