Hydrogen-Bond Acidity of Ionic Liquids: an Extended Scale†

Kiki A. Kurnia1,2, Filipa Lima1, Ana Filipa M. Cláudio1, João A. P. Coutinho1 and Mara G. Freire1,∗

1CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

2Center of Research in Ionic Liquids, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Tronoh 31750, Malaysia.

Electronic Supplementary Information

*Corresponding author: Tel: +351-234-370200; Fax: +351-234-370084; E-mail: maragfreire@ua.pt
(M. G. Freire).
Figure S1. Comparison between experimental hydrogen-bond donating (α) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as a function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [1]; (▲), [2]; (●), [3]; (×), [4]; (+), [5]; (−), [6]; (＊), [7]; (○), [8]; (△), [9]; (Δ), [10]; (○), [11]; (×), [12]; (+), [13]; (−), [14]; (＊), [15]; (○), [16]; (□), [17]; (Δ), [18]; (○), [19]; (×), [20].
Figure S2. Comparison between experimental hydrogen-bond accepting (β) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [1]; (▲), [2]; (●), [3]; (×), [4]; (+), [5]; (−), [6]; (⋆), [7]; (◊), [8]; (□), [9]; (Δ), [10]; (○), [11]; (×), [12]; (+), [13]; (−), [14]; (⋆), [15]; (◇), [16]; (◊), [17]; (□), [18]; (○), [19]; (×), [20].
Figure S3. Comparison between experimental dipolarity/polarizability (π^*) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [1]; (▲), [2]; (●), [3]; (×), [4]; (+), [5]; (−), [6]; (♦), [7]; (◇), [8]; (☐), [9]; (Δ), [10]; (○), [11]; (×), [12]; (+), [13]; (−), [14]; (♦), [15]; (◇), [16]; (☐), [17]; (Δ), [18]; (○), [19]; (×), [20].

Figure S4. Comparison between experimental hydrogen-bond donating (α) values of 1-alkyl-1-methylpyrrolidinium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [2]; (▲), [11]; (●), [23]; (×), [24]; (+), [17]; (−), [19].
Figure S5. Comparison between experimental hydrogen-bond accepting (β) values of 1-alkyl-1-methylpyrrolidinium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [2]; (▲), [11]; (●), [23]; (∗), [24]; (+),[19].

Figure S6. Comparison between experimental hydrogen-bond dipolarity/polarizability (π^*) values of 1-alkyl-1-methylpyrrolidinium-based ILs obtained in this work and in the literature as function of total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [2]; (▲), [11]; (●), [23]; (∗), [24]; (+), [17]; (−), [19].
Figure S7. Comparison between experimental hydrogen-bond donating (α) values of 1-alkyl-1-methylpiperidinium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [2]; (▲), [11]; (●), [25].

Figure S8. Comparison between experimental hydrogen-bond accepting (β) values of 1-alkyl-1-methylpiperidinium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [2]; (▲), [11]; (●), [25].
Figure S9. Comparison between experimental dipolarity/polarizability (π^*) values of 1-alkyl-1-methylpiperidinium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (\bigstar), This work; (\blacksquare), [2]; (\bigtriangleup), [11]; (\bullet), [25].

Figure S10. Comparison between experimental hydrogen-bond donating (α) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (\bigstar), This work; (\blacksquare), [1]; (\bigtriangleup), [2]; (\bullet), [6]; (\times), [10]; ($+$), [26]; ($-$), [11]; (\ast), [27]; (\bigcirc), [14]; (\square), [17].
Figure S11. Comparison between experimental hydrogen-bond accepting (β) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [1]; (▲), [2]; (●), [6]; (×), [10]; (+), [26]; (−), [11]; (∗), [27]; (◊), [14].

Figure S12. Comparison between experimental dipolarity/polarizability (π^*) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (♦), This work; (■), [1]; (▲), [2]; (●), [6]; (×), [10]; (+), [26]; (−), [11]; (∗),[14]; (◊), [17].
Figure S13. Comparison between experimental hydrogen-bond donating (α) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (\circ), This work; (■), [1]; (▲), [6]; (★), [11]; (×), [14].

Figure S14. Comparison between experimental hydrogen-bond accepting (β) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (\circ), This work; (■), [1]; (▲), [6]; (★), [11]; (×), [14].
Figure S15. Comparison between experimental dipolarity/polarizability (π^*) values of 1-alkyl-3-methylimidazolium-based ILs obtained in this work and in the literature as function of the total number of carbon atoms at the alkyl chains (N). Symbols: (+), This work; (■), [1]; (▲), [6]; (●), [11]; (×), [14].
Figure S16. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 3.

Figure S17. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 4.
Figure S18. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 5.

Figure S19. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 6.
Figure S20. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 7.

Figure S21. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 8.
Figure S22. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 9.

Figure S23. Correlation between experimental (α_{EXP}) and predicted (α_{PRED}) values of hydrogen-bond acidity using Equation 10.
The absolute average relative deviation, AARD, was calculated using Equation S1

\[
AARD / \% = \frac{1}{N} \sum_{\alpha} \left| \frac{\alpha_{\text{EXP}} - \alpha_{\text{PRED}}}{\alpha_{\text{EXP}}} \right| \times 100\%
\]

where, \(N \) is the number of data, \(\alpha_{\text{EXP}} \) is the reported experimental data, \(\alpha_{\text{PRED}} \) is the predicted value.
References

