Supporting Information

Facile synthesis of SnO₂ nanocrystals anchored onto graphene nanosheets as the anode material for lithium-ion batteries
Yanjun Zhang, Li Jiang, Chunru Wang*

Fig. S1 Raman spectra of the as-prepared SnO₂/graphene nanocomposite (red) and graphene oxide nanosheets (black).

Fig. S2 TG analysis of the as-prepared SnO₂/graphene nanocomposite under air flow with a temperature ramp of 10°C min⁻¹.
Fig. S3 (a) Nitrogen adsorption/desorption isotherm and (b) Barrett-Joyner-Halenda (BJH) pore size distribution plot of the as-prepared SnO$_2$/graphene nanocomposite.

Fig. S4 (a) TEM image and (b) XRD pattern of the bare SnO$_2$ nanoparticles. (c) SEM image and (d) XRD pattern of the bulk SnO$_2$ powders.
Fig. S5 Coulombic efficiency for the electrodes of SnO$_2$/graphene nanocomposite, bare SnO$_2$ nanoparticles and bulk SnO$_2$ powders in the voltage range of 0.01-3.0 V (versus Li$^+$/Li) at a current density of 500 mA g$^{-1}$.

Fig. S6 Nyquist plots of the electrode made from SnO$_2$/graphene nanocomposite, bare SnO$_2$ nanoparticles and bulk SnO$_2$ powders before cycling obtained by applying a sine wave with amplitude of 10.0 mV over the frequency range 100 kHz-10 mHz.