Supporting Information

Ni(OH)$_2$-modified Ti-doped α-Fe$_2$O$_3$ photoanode for improved photoelectrochemical oxidation of urea: the role of Ni(OH)$_2$ as a cocatalyst

Dandan Xu,a Zewen Fu,a Dejun Wang,a,b Yanhong Lin,a Yanjun Sun,a Dedong Meng,a Teng feng Xie*.
a College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China. E-mail: xietf@jlu.edu.cn
b Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China.

Fig. S1 Nyquist plots of PEIS measurements on Ti-Fe$_2$O$_3$ and Ni(OH)$_2$/Ti-Fe$_2$O$_3$ with different electrodeposition time. The electrolyte is 1 M KOH with 0.1 M urea and the intensity of light is 100 mW/cm2.
Fig. S2 Accumulated charge density at different applied potentials of Ti-Fe$_2$O$_3$ and N300 in 1 M KOH and 1 M KOH with 0.1 M urea electrolytes under an illumination of 100 mW/cm2.
Fig. S3. Photoelectrodegradation efficiencies of Ti-Fe$_2$O$_3$ and Ni(OH)$_2$/Ti-Fe$_2$O$_3$ with different electro-deposition time under UV-light irradiation for 2 h (gray) and λ>400 nm irradiation 1h (magenta). We used a three electrode configuration with Ag/AgCl reference electrode, Pt wire counter electrode and the as-obtained films working electrode with an active area of 0.675 cm2 in photoelectrodegradation measurements. The degradation solution volume is 9 mL with RhB (2.5 mg/L) and NaSO$_4$ (0.1 M) and the potential is 0.3 V vs. Ag/AgCl.