Supporting Information:

Electronic Storage Capacity of Ceria: Role of Peroxide in Au\textsubscript{x} Supported on CeO\textsubscript{2} (111) Facet and CO adsorption

Yinli Liu,a Huiying Li,*a Jun Yu,a Dongsen Mao,a and Guanzhong Lu*a,b

a Research Institute of Applied Catalysis, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China

b Key Laboratory for Advanced Materials and Research Institute of Industrial catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

The structure or spin density of CeO\textsubscript{2} (111) facet containing single O vacancy is shown Figure S1, two excess electrons are localized at two Ce ions, which is consistent with our previous calculation.S1

Figure S1. Calculated structures (top view) of the CeO\textsubscript{2} (111) facet containing single O vacancy: (a) top-surface O vacancy, and (b) sub-surface O vacancy. (The isosurface (0.005 e/Å3) of calculated spin charge densities are in dark blue).
The structures of O_2^{2-} (peroxide) and O_2^- (superoxide) species adsorbed on the CeO$_2$ (111) facet were studied as the reference.51 Peroxide formed by O_2 adsorbing at oxygen vacancy on CeO$_2$ (111) facet with a single top-surface O vacancy, in which O_2 in the surface oxygen vacancy bind with its neighbor Ce ions, and the O-O bond changed to 1.44Å from 1.21Å in natural O$_2$ molecular, as shown in Figure S2a, and superoxide resulted from O_2 adsorbed at the second-neighbor Ce$^{3+}$ site on CeO$_2$ (111) containing single subsurface O vacancy is shown Figure S2b. The charge density difference analysis of these two configurations also was calculated and shown in Figure S2. Like the result predicted by Teng et al.,52 no electron is located at Ce atom on the surface with peroxide, and one electron is located at Ce atom by bonding with O_2^- on the surface with superoxide. The structure and the charge density difference for CeO$_2$(111) containing peroxide and an oxygen vacancy ((PO$_2$)$_1$-V$_1$) are also calculated and shown in Figure 2Sc. The O-O bond length is 1.44 Å, which is consistent with that on PO$_2$. And there are two reduced Ce$^{3+}$ ions on the (PO$_2$)$_1$-V$_1$ surface.

![Structure: PO$_2$, SO$_2$-SV, PO$_2$-V$_1$](image)

![Charge: PO$_2$, SO$_2$-SV, PO$_2$-V$_1$](image)

Figure S2. Calculated structures of the CeO$_2$ (111) facet containing (a) peroxide, (b) superoxide, and (c) peroxide and O vacancy simultaneously, and the corresponding charge density difference. (The isosurface value was set as 0.005 e/Å3).
Au$_3$ supported on CeO$_2$-(PO$_2$)$_2$-V$_1$ and Au$_4$ supported on CeO$_2$-(PO$_2$)$_4$-V$_2$ and corresponding CO adsorption on these Au$_x$/CeO$_2$ surfaces were calculated and their structures were displayed in Figure S3. As shown in Figure S3a, when three Au atoms lie linearly on the CeO$_2$ surface with the central Au atom bound to the O vacancy, it can be anchored by two peroxides. For this configuration, the lengths of two Au–O-peroxide bonds are 2.21Å and 2.20Å respectively. The corresponding adsorption energy of Au$_3$ cluster on CeO$_2$ is 2.32 eV. CO can adsorb on the Au$_3$-(PO$_2$)$_2$-V$_1$ surface (Figure S3b) to form a C-Au bond with the bond length of 1.92Å, and the corresponding adsorption energy is 0.43eV. For Au$_4$-(PO$_2$)$_4$-V$_2$ configuration (Figure S3c), all Au atoms lie on the surface with two structures of Au$_2$-(PO$_2$)$_2$-V$_1$-L. The Au$_4$ adsorption energy is 5.00 eV. CO can chemically adsorb on the supported Au$_4$ (Au$_4$-(PO$_2$)$_4$-V$_2$) with the adsorption energy of 0.57 eV.

Figure S3. Calculated structures of Au$_3$-(PO$_2$)$_2$-V$_1$ and Au$_4$-(PO$_2$)$_4$-V$_2$ and CO oxidation on them.

References
