Probing the Interaction of Rh, Co and Bimetallic Rh-Co Nanoparticles with CeO$_2$ Support: Catalytic Materials for Alternative Energy Generation

E. Varga,a P. Pusztai,b L. Óvári,c A. Oszkó,a A. Erdőhelyi,a C. Papp,d H-P. Steinrück,d Z. Kónya,b,c J. Kiss,a,e*

aDepartment of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Aradi v.t. 1
bDepartment of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, cMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, H-6720 Szeged, Rerrich B. t. 1., Hungary
dChair of Physical Chemistry II, University of Erlangen-Nürnberg, Egerlandstr.3, 91058 Erlangen, Germany

Supporting Information

![Survey spectra of 5% Rh/ceria in the as received form (A) and after reduction at 773 K for 1 h (B), as well as the same spectra of 0.1% Rh+10% Co/ceria (C,D), respectively.](image)

Figure S1. Survey spectra of 5% Rh/ceria in the as received form (A) and after reduction at 773 K for 1 h (B), as well as the same spectra of 0.1% Rh+10% Co/ceria (C,D), respectively.
Figure S2. Deconvoluted Rh 3d spectra of 1% Rh/ceria (A) and Co 2p spectra of 10% Co/ceria (B) after oxidation, reduction and heating in N$_2$ up to 673 or 773 K.