Simulation of Raman optical activity

of multi-component monosaccharide samples

Adéla Melcová, Jiří Kessler, Petr Bouř, and Jakub Kaminský

Contents

Fig. S1. Relative potential energy distributions

Fig. S2. Convergence of the cluster averaging

Fig. S3. Comparison of MD and DFT geometry distributions.

Fig. S4. Experimental spectra of DG and DM mixtures.

Fig. S1. Calculated (B3LYP/6-311++G***/CPCM) relative potential energy distributions (PED) of selected stretching (ν), bending (δ), and torsion (τ) coordinates in DG vibrations.
Fig. S2. Example of a cluster of α-D-glucose with water molecules, and dependence of ROA spectral error (in %) on the number of averaged snapshots, preselected from 1000 ones by the parallel variable selection approach (J. Kessler, M. Dračínský and P. Bouř, J. Comput. Chem., 2012, 34, 366-371).
Fig. S3. Comparison of selected torsional angles as obtained by MD and DFT computations, for α-DM (left) and β-DM (right). MD probability histograms (black line) were obtained during 10 ns simulations with the GLYCAM06 force field. The DFT distribution bars (red, in arbitrary scale) were obtained from the B3LYP/6-311++G**/CPCM conformational scan and Boltzmann weighting.
Fig. S4. Experimental Raman and ROA spectra of DG and DM mixtures.