Electronic supporting information

Charge-transfer complex versus σ-complex between TiO₂

and bis(dicyanomethylene) electron acceptors

Jun-ichi Fujisawa,*¹ Morio Nagata,² and Minoru Hanaya¹

¹Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.

²Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, Ichigaya-Funagawara, Shinjuku-ku, Tokyo 162-0826, Japan.

E-mail: jfujisawa@gunma-u.ac.jp
Here, we describe the synthesis methods of 1,4-TCNAQ and TCNTQ.

1,4-TCNAQ

To a solution of 1,4-naphthoquinone (158 mg, 1.0 mmol) and malononitrile (198 mg, 3.0 mmol) in dry CH$_2$Cl$_2$ (100 ml), 14% TiCl$_4$ (3.0 mmol) in CH$_2$Cl$_2$ (3 ml) was added at 273 K under argon atmosphere. Then pyridine (0.48 ml, 6.0 mmol) was added dropwise to the mixture solution. The solution was refluxed for 17 hours. The reaction mixture was cooled to room temperature, washed with water (3 x 200 ml) and extracted with CH$_2$Cl$_2$ (250 ml). The product was purified by column chromatography (silica gel, CH$_2$Cl$_2$), giving a yellow solid (30.7 mg, yield 12%). 1H-NMR (400 MHz, CD$_2$Cl$_2$) δ/ppm 7.6 (singlet, 2 H), 7.8-7.9 (quartet, 2 H), 8.7-8.8 (quartet, 2 H); FAB-Mass (M$^+$) m/z found 254, calc. 254.06.

TCNTQ1

2,5-Dibromothiophene (0.42 g, 1.74 mmol), tetracyanoethylene oxide (1.00 g, 6.94 mmol) and 1,3-dibromopropane (20 ml) were stirred with N$_2$ bubbling at room temperature for 30 minutes. The reaction mixture was heated at 150 ºC for 2 hours and cooled to room temperature. The precipitate was purified by column chromatography, giving a yellow solid (0.13 g, 35.7 %). Mp: 178-179 ºC; APCI-MS: m/z = 209[M$^+$]; 1H-NMR (300 MHz, CDCl$_3$): δ 7.67 (2H, singlet); IR(KBr): v/cm$^{-1}$ 3104, 2226, 1542.

Reference