Supporting Information for: Molecular adsorption at Pt(111). How accurate are DFT functionals?

Sarah Gautier,¹ Stephan N. Steinmann,¹ Carine Michel,^{1,2} Paul Fleurat-Lessard^{1,3} and Philippe Sautet^{1,2*} ¹Ecole Normale Superieure de Lyon, France ²CNRS, France ³Institut de Chimie Moléculaire de l'Université de Bourgogne, France * Corresponding author: philippe.sautet@ens-lyon.fr

This supporting information was prepared on September 22, 2015 and contains 6 pages.

Table of content

Table S1	2
Table S2	
Figure S1	4
Table S3:	5

Table S1. Description of the benchmark set for molecular adsorption on Pt(111). The table lists the integral adsorption energy calculated from the experimental data, at the selected coverage. Mode: M: molecular chemisorption, D: dissociative chemisorption, R: reaction as indicated ((g) is for gas phase, (a) for adsorbed species) INTF : integration of a fit function provided in ref

Molecule / reaction	Exp method	Mode	Coverage for E calc	Energy(eV)	tool	ref
C ₂ H ₄ (g) gives CCH ₃ (a) + H(a)	SCAC	R	1/9 ML	1.36	INTC	1 ^(#)
Cyclohexene	SCAC	М	1/9 ML	1.273	INTF	2
c-C ₆ H ₁₀ (g) gives c-C ₆ H ₉ (a) + H(a)	SCAC	R	1/9 ML	1.433	INTF	2
Benzene	SCAC	М	1/9 ML	1.72 (1.66)	INTF	3 (4)
Naphthalene	SCAC	М	1/16 ML	2.763	INTF	5
Methane	TPD	М	1/9 ML	0.181	INTF	6
Ethane	TPD	М	1/9ML	0.331	INTF	6
$\frac{1}{2}(H_2 gas)$	Low energy recoil scatt	D	1/9 ML ^(‡)	0.39 ± 0.02	INTC	7
$\frac{1}{2}(H_2 gas)$	Nuclear micro- analysis	D	1/9 ML ^(‡)	0.347 ± 0.04	INTC	8
CO ads	SCAC	М	1/9 ML	1.29 (1.31) 1.29	INTC (INTF) INTC	1 ^(#) 4 9
½ (02gas)	SCAC	D	1/9 ML	1.10	INTC	10 ^(#)
$\frac{1}{2}$ (0 ₂ gas)	SCAC	D	1/9 ML	1.08	INTF	11

INTC : manual integration on the plot of E vs coverage in ref

(‡) adsorption energy is constant between 0 and 0.33 ML. (#) Published data incorrect due to wrong reflectivity of Pt(111). Scale factor of 0.7059 applied here.

1) Brown, W. A.; Kose, R.; King, D. A. Femtomole Adsorption Calorimetry on Single-Crystal Surfaces. *Chem. Rev.* **1998**, *98*, 797–832.

2) Lytken, O.; Lew, W.; Harris, J. J. W.; Vestergaard, E. K.; Gottfried, J. M.; Campbell, C. T. 20 Energetics of Cyclohexene Adsorption and Reaction on Pt(111) by Low-Temperature Microcalorimetry. *J. Am. Chem. Soc.* **2008**, *130*, 10247–10257.

3) Ihm, H.; Ajo, H. M.; Gottfried, J. M.; Bera, P.; Campbell, C. T. Calorimetric Measurement of the Heat of Adsorption of Benzene on Pt(111). *J. Phys. Chem. B* **2004**, *108*, 14627–14633.

4) Schießer, A.; Hörtz, P.; Schäfer, R. Thermodynamics and kinetics of CO and benzene adsorption on Pt(111) studied with pulsed molecular beams and microcalorimetry. *Surf. Sci.* **2010**, *604*, 2098–2105.

5) Gottfried, J. M.; Vestergaard, E. K.; Bera, P.; Campbell, C. T. Heat of Adsorption of Naphthalene on Pt(111) Measured by Adsorption Calorimetry *J. Phys. Chem. B* **2006**, *110*, 17539-17545.

6) Tait, S. L.; Dohnálek, Z.; Campbell, C. T.; Kay, B. D. *n*-alkanes on Pt(111) and on C(0001)/Pt(111): Chain length dependence of kinetic desorption parameters *J. Chem. Phys.* **2006**, *125*, 234308.

7) Koeleman, B.J.J.; de Zwart, S.T.; Boers, A.L.; Poelsema, B.; Verhey, L.K. Adsorption study of hydrogen on a stepped Pt (997) surface using low energy recoil scattering. *Nucl. Instrum. Methods Phys. Res.* **1983**, *218*, 225-229.

8) Norton, P.R.; Davies, J.A.; Jackman, T.E. Absolute coverage and isosteric heat of adsorption of deuterium on Pt(111) studied by nuclear microanalysis. *Surf. Sci.* **1982**, *121*, 103-110.

9) Fischer-Wolfarth, J.-H.; Hartmann, J.; Farmer, J. A.; Flores-Camacho, J. M.; Campbell, C. T.; Schauermann, S.; Freund, H.-J. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts. *Rev. Sci. Instrum.* **2011**, *82*, 024102.

10) Fiorin, V.; Borthwick, D.; King, D. A. Microcalorimetry of O_2 and NO on flat and stepped platinum surfaces. *Surf. Sci.* **2009**, *603*, 1360–1364.

11) Karp, E. M.; Campbell, C. T.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K. Energetics of Oxygen Adatoms, Hydroxyl Species and Water Dissociation on Pt(111). *J. Phys. Chem. C* **2012**, *116*, 25772–25776.

Table S2. Adsorption energies (in eV) for various systems and density functional approximations as well as the experimental reference value when available. All calculations were conducted with a slab of 6 layers in a 3x3 supercell except for the adsorption of naphthalene where a 4x4 supercell was used.

Kpts	System	PBE	optPBE	optB86b	BEEF	PBE-dDsC	dDsC ^(a)	Ехр
7x7x1	Ethylene	-1.21	-1.44	-1.73	-1.12	-1.51	-0.33	NA
7x7x1	Ethylidyne+H	-1.74	-1.75	-2.15	-1.43	-1.99	-0.28	-1.36
7x7x1	Butene cis	-0.93	-1.52	-1.85	-1.05	-1.51	-0.61	NA
7x7x1	Butene trans	-0.93	-1.53	-1.86	-1.06	-1.51	-0.61	NA
7x7x1	Cyclohexene (boat down)	-0.69	-1.31	-1.62	-0.90			
7x7x1	Cyclohexene (chair trans)	-0.74	-1.37	-1.69	-0.69			
7x7x1	Cyclohexene (chair cis)	-0.75	-1.45	-1.80	-0.95			
7x7x1	Cyclohexene (boat up)	-0.84	-1.51	-1.84	-1.03			
9x9x1	Cyclohexene (boat up)	-0.84	-1.51	-1.83	-1.04	-1.50	-0.66	-1.27
7x7x1	C ₆ H ₉ +H	-1.00	-1.63	-2.18	-0.97	-1.73	-0.74	-1.43
9x9x1	C ₆ H ₉ +H	-1.01	-1.63	-2.18	-0.98	-1.73	-0.74	-1.43
5x5x1	Butadiene (cis 1,2 di- σ , 3,4 π)	-1.57	-1.99	-2.49	-1.50			
5x5x1	Butadiene (di σ)	-1.00	-1.51	NA	-1.33			
5x5x1	Butadiene(tetra σ)	-1.82	-2.23	-2.78	-1.71			
7x7x1	Butadiene(tetra σ)	1.89	-2.30	-2.86	-1.75	-2.43	-0.58	NA
9x9x1	Butadiene(tetra σ)	-1.89	-2.30	-2.86	-1.76			NA
7x7x1	Benzene bri30	-1.12	-1.65	-2.34	-1.03	-1.76	-0.71	-1.72
9x9x1	Benzene bri30	-1.12	-1.65	-2.34	-1.04	-1.76	-0.69	-1.72
11x11x1	Benzene bri30	-1.13	-1.66	-2.35	-1.05	-1.76	-0.68	-1.72
11x11x1	Benzene hcp0	-0.86	-1.40	-2.05	-0.82			
7x7x1	Naphtalene ^(b)	-1.48	-2.32	-3.42	-1.41	-2.57	-1.18	-2.76
9x9x1	Naphtalene ^(b)	-1.46	-2.30	-3.39	-1.39	-2.51	-1.14	-2.76
7x7x1	Methane	-0.01	-0.23	-0.21	-0.12	-0.17	-0.10	-0.18
7x7x1	Ethane	-0.03	-0.36	-0.39	-0.22	-0.32	-0.28	-0.33
7x7x1	Hydrogen, fcc site	-0.52	-0.38	-0.50	-0.27	-0.55	-0.05	-0,37
7x7x1	Hydrogen, top site	-0.48	-0.42	-0.50	-0.30	-0.52	-0.06	NA
7x7x1	CO(top)	-1 71	-1 68	-1 87	-1 49	-1 86	-0 16	-1 29
	CO (top)	1 .7 1	1.00	1.07	1.45	1.00	0.10	1.25

(a) Contribution of the dispersion correction dDsC to the adsorption energy. (b) 4x4 supercell.

Figure S1. Adsorption geometries with characteristic distances indicated. See Table S3 for more details. a: ethylene C_2H_4 , b: ethylidyne CCH₃ and one H, c: trans 2-butene C_4H_8 , d: cyclohexene C_6H_{10} boat up, e: C_6H_9 and one H, f: butadiene C_4H_6 , g: benzene C_6H_6 , h: naphthalene $C_{10}H_8$, i: methane CH₄, j: ethane C_2H_6 , k: H atom in fcc position, l: CO, m: O atom.

System	Ethylene			System	Ethylid		
Distances	Pt-C	C-C	C-H	Distances	Pt-C	C-C	Pt-H
PBE	2.110	1.489	1.097	PBE	2.013	1.491	1.862
optPBE-vdW	2.127	1.491	1.097	optPBE-vdW	2.022	1.496	1.876
optB86b-vdW	2.111	1.49	1.1	optB86b-vdW	2.013	1.488	1.871
BEEF-vdW	2.121	1.487	1.091	BEEF-vdW	2.012	1.496	1.865
PBE-dDsC	2.107	1.487	1.097	PBE-dDsC	2.011	1.488	1.86

Table S3: Characteristic distances (in Å) for various considered systems.

System	Butene trans								
Distances	Pt-C	C-C	C-H						
PBE	2.120	1.506	1.102						
optPBE-vdW	2.133	1.509	1.101						
optB86b-vdW	2.117	1.506	1.105						
BEEF-vdW	2.127	1.506	1.095						
PBE-dDsC	2.117	1.503	1.101						

System	Cyclohexene					
Distances	Pt-C	C-C	C-H			
PBE	2.126	1.504	1.102			
optPBE-vdW	2.138	1.510	1.102			
optB86b-vdW	2.120	1.507	1.106			
BEEF-vdW	2.131	1.506	1.096			
PBE-dDsC	2.120	1.503	1.101			

System		C ₆ H ₉ +H									
Distances	C_1C_2	C_2C_3	C_3C_4	C_4C_5	C_5C_6	C_6C_1	H-Pt ^a	H-Pt ^b	C ₂ -Pt	C ₃ -Pt	C-H
PBE	1.496	1.497	1.526	1.522	1.523	1.527	4.089	1.848	2.153	3.081	1.101
optPBE-vdW	1.500	1.500	1.532	1.528	1.529	1.534	4.084	1.854	2.176	3.09	1.102
optB86b-vdW	1.498	1.498	1.526	1.522	1.523	1.527	4.002	1.842	2.152	3.062	1.104
BEEF-vdW	1.496	1.496	1.529	1.525	1.526	1.531	4.135	1.846	2.164	3.09	1.096
PBE-dDsC	1.494	1.494	1.522	1.519	1.519	1.524	4.032	1.847	2.15	3.067	1.1

System	Butadiene							
Distances	C-C	C-Pt-a	C-Pt-b					
PBE	1.486	2.159	2.097					
optPBE-vdW	1.489	2.181	2.112					
optB86b-vdW	1.487	2.16	2.097					
BEEF-vdW	1.485	2.174	2.106					
PBE-dDsC	1.484	2.156	2.094					

System		Benzene											
Distances	C_1C_2	C_2C_3	C_3C_4	C_4C_5	C_5C_6	C_6C_1	Pt-C ₅	Pt-C ₁	Pt-C ₆				
PBE	1.474	1.474	1.435	1.473	1.473	1.435	2.158	2.197	2.189				
optPBE	1.476	1.475	1.433	1.475	1.475	1.433	2.181	2.23	2.223				
optB86b	1.474	1.474	1.435	1.474	1.474	1.435	2.16	2.203	2.194				
BEEF	1.472	1.472	1.431	1.472	1.472	1.431	2.173	2.219	2.21				
PBE-dDsC	1.472	1.471	1.433	1.471	1.471	1.434	2.156	2.193	2.186				

System	Naphtalene											
Distances	C_1C_2	C_2C_3	C_3C_4	C_4C_5	C_5C_6	C_6C_1	C ₃ C ₇	C ₇ C ₈	C ₈ C ₉	C ₉ C ₁₀	C ₁₀ C ₄	
PBE	1.469	1.485	1.454	1.485	1.469	1.428	1.485	1.469	1.428	1.469	1.484	
optPBE	1.471	1.486	1.452	1.487	1.47	1.425	1.486	1.47	1.425	1.471	1.487	
optB86b	1.470	1.484	1.452	1.485	1.469	1.427	1.485	1.47	1.427	1.469	1.485	
BEEF	1.467	1.483	1.452	1.483	1.466	1.423	1.483	1.467	1.423	1.467	1.483	
PBE-dDsC	1.467	1.482	1.452	1.482	1.467	1.427	1.482	1.467	1.427	1.467	1.482	
<u> </u>												

System	Naphtalene									
Distances	Pt-C ₁	Pt-C ₆	C₅-Pt	C ₁₀ -Pt						
PBE	2.225	2.215	2.221	2.138						
optPBE	2.272	2.256	2.261	2.158						
optB86b	2.234	2.222	2.229	2.139						
BEEF	2.256	2.246	2.242	2.153						
PBE-dDsC	2.223	2.213	2.217	2.136						

System	Methane		System	Ethane			
Distances	Pt-C	C-H	Pt-H	Distances	Pt-C	C-C	Pt-H
PBE	3.809	1.102	2.713	PBE	3.86	1.525	2.68
optPBE-vdW	3.702	1.103	2.606	optPBE-vdW	3.628	1.53	2.496
optB86b-vdW	3.416	1.113	2.307	optB86b-vdW	3.465	1.522	2.232
BEEF-vdW	3.806	1.093	2.719	BEEF-vdW	3.865	1.528	2.721
PBE-dDsC	3.867	1.096	2.766	PBE-dDsC	3.874	1.522	2.484

System	Hydrogen	0	со
Distances	Pt-H	Pt-O	Pt-C C-O
PBE	1.868	2.040	1.841 1.157
optPBE-vdW	1.878	2.050	1.853 1.157
optB86b-vdW	1.872	2.038	1.845 1.156
BEEF-vdW	1.869	2.051	1.85 1.156
PBE-dDsC	1.861	2.040	1.84 1.157