Supporting Information

Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance

Zhimin Liang$^1$, Mingze Su$^1$, Yangyang Zhou$^1$, Li Gong$^2$, Chuanxi Zhao$^1$, Keqiu Chen$^1$, Fangyan Xie$^2$, Weihong Zhang$^2$, Jian Chen$^2$, Pengyi Liu$^1$, Weiguang Xie$^1$$^*$

1. Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P R China
2. Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, P R China

Figure S1 (a) The Mo 3d peak of the MoO$_{3-x}$ thin film. (b) The W 4f peak of the WO$_{3-x}$ thin film. (c) The V 2p peak of the V$_2$O$_{5-x}$ thin film.

* Author to whom correspondence should be addressed: E-mail: wgxie@email.jnu.edu.cn
Figure S2 (a) the band structure of WO$_3$. (b) The band structure of V$_2$O$_{5-x}$. In these two materials, the vacuum level, conduction and valance band are the same on H-Si and CH$_3$-Si.