Trigonal Cu$_2$-II-Sn-VI$_4$ (II=Ba, Sr and VI=S, Se) Quaternary Compounds for Earth-Abundant Photovoltaics

Feng Hong,*,†,‡ Wenjun Lin,† Weiwei Meng,†,§ and Yanfa Yan*,†

†Department of Physics, Shanghai University, Shanghai 200444, China
‡Department of Physics and Astronomy, and Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, USA
§School of Physics and Technology, Wuhan University, Wuhan, 430072, China

Supporting Information

Figure S1. Thermodynamically stable range at $\mu_{\text{Cu}} = -0.2$ eV plane for (a) Cu$_2$BaSnS$_4$, (b) Cu$_2$SrSnS$_4$, (c) Cu$_2$BaSnSe$_4$ and (d) Cu$_2$SrSnSe$_4$, respectively.
Figure S2. HSE calculated band structure of kesterite Cu$_2$ZnSnS$_4$.

Figure S3. HSE calculated band structures for (a) Cu$_2$BaSnSe$_4$ and (b) Cu$_2$SrSnSe$_4$ with P3$_1$ structures, respectively.
Figure S4. GGA+U calculated (U=6 eV for Cu 3d orbital) transition energy levels of (a) acceptor-like and (b) donor-like intrinsic defects in Cu$_2$BaSnS$_4$.