Supplementary Information

Aromatic character of planar boron-based clusters revisited by ring current calculations

Hung Tan Pham, a,b Kie Zen Lim, c Remco W. A. Havenith c and Minh Tho Nguyen, d,*

a Computational Chemistry Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

b Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

c Theoretical Chemistry, Zernike Institute for Advanced Materials and Stratingh Institute for Chemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands and Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium

d Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

The file contains:

Scheme 1. Geometries of the most stable B_6 and B_6^{2-} clusters

Scheme 2. Shape of the delocalized π and σ MOs of B_6.

Scheme 3. Optimized geometries of the lowest-lying structures of B_8, B_8^{2-} and B_9⁻.

Scheme 4. Optimized structures of the anions B_{10}^{2-} and B_{11}⁻.

Scheme 5. The optimized structure of B_{12} and B_{13}⁺.

Scheme 6. Optimized structure of the elongated dianions B_{14}^{2-} and B_{16}^{2-}.

Scheme 7. Optimized structures of B_6H_5⁺ and Li_7B_5H_5⁺

* Email: minh.nguyen@chem.kuleuven.be
Figure S1. The possible transitions of B₃⁺ cluster.

Figure S2. The total, π and σ ring current maps of B₇⁻, B₈⁰²⁻ and B₉⁻ clusters. The ring current density was calculated using B3LYP/6-311G* method.

Figure S3. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B7-boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S4. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B10²⁻ boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S5. The MOs have main contributon to π and σ ring current of B₁₂.

Figure S6. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B16²⁻ boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S7. The ring current maps of MOs which has main contribution to π and σ ring current density of B₁₉⁻ and B₁₈²⁻.

Figure S8. The ring current maps of MOs which has main contribution to π and σ ring current density of a) Li₇B₅H₅⁺ and b) B@B₅H₅⁺

Figure S9. The ring current maps of M@B₆H₆q with M=Co, Fe and Mn; q=+1,0, -1.

Figure S10. The current density of MOs of Fe@B₆H₆

Figure S11. The ring current maps of σ MOs (a) π-MOs (b) for Fe@B₇H₇

Figure S12. The ring current maps of BₙCₘ cluster which isoelectronic with B₁₀²⁻.
Scheme 1. Geometries of the most stable B_6 and B_6^{2-} clusters

Scheme 2. Shape of the delocalized π and σ MOs of B_6.

Scheme 3. Optimized geometries of the lowest-lying structures of B$_8$, B$_8^{2-}$ and B$_9^{-}$.

Scheme 4. Optimized structures of the anions B$_{10}^{2-}$ and B$_{11}^{-}$.
Scheme 5. The optimized structure of B_{12} and B_{13}^+.

Scheme 6. Optimized structure of the elongated dianions B_{14}^{2-} and B_{16}^{2-}.

Scheme 7. Optimized structures of $B_6H_5^+$ and $Li_7B_5H_5^+$.
Figure S1. The possible transitions of B_3^+ cluster.
Figure S2. The total, π and σ ring current maps of B₇⁻, B₈⁻² and B₉⁻ clusters. The ring current density was calculated using B3LYP/6-311G* method.
Figure S3. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B\textsubscript{7}-boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.
Figure S4. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B$_{10}^6$ boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.
Figure S5. The MOs have main contribution to π and σ ring current of B_{12}.
Figure S6. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B_{16}^+ boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.
Figure S7. The ring current maps of MOs which has main contribution to π and σ ring current density of B_{19} and B_{18}^{2-}.
Figure S8. The ring current maps of MOs which has main contribution to π and σ ring current density of a) Li₇B₅H₅⁺ and b) B₂B₅H₅⁺
Figure S9. The ring current maps of M@B6H6q with M=Co, Fe and Mn; q=+1,0, -1.
Figure S10. The current density of MOs of Fe@B₆H₆
Figure S11. The ring current maps of σ MOs (a) π-MOs (b) for Fe@B$_7$H$_7$

(a) σ-electrons, π-electrons, σ-electrons
Figure S12. The ring current maps of B_nC_m cluster which isolectronic with B_{10}^{2-}.