Supporting Information

Understanding Molecular Switching Properties of Octaphyrins
T. Woller, a J. Contreras-García, b P. Geerlings, a Frank De Proft, a and M. Alonso a *

a Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB). Pleinlaan 2, 1050 Brussels (Belgium).
b Laboratoire de Chimie Théorique, 4 Pl. Jussieu, 75252 Paris cedex 05 (France).

E-mail: malonsog@vub.ac.be

This PDF files includes:

I. Performance of several density functionals in geometry determination of neutral and diprotonated meso-octakis(pentafluorophenyl) [36]octaphyrins.
II. Dependence of the relative energies with the functional.
III. Conformational analysis of neutral unsubstituted [36]octaphyrin.
IV. Interconversion pathways of neutral unsubstituted [36]octaphyrin.
V. Substituent effect on the conformation of neutral [36]octaphyrins.
VI. Conformational changes upon protonation and redox reactions
VII. Conformational changes of meso-octakis(pentafluorophenyl) octaphyrins upon protonation and redox reactions.
VIII. Aromaticity.
IX. Cartesian coordinates of M06/6-31G(d,p) optimized geometries.
I. Performance of several density functionals in geometry determination of neutral and diprotonated \textit{meso-octakis(pentafluorophenyl)} [36]octaphyrins

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure_s1.png}
\caption{X-ray crystal structures of the \textit{meso-octakis(pentafluorophenyl)} [36]octaphyrin(1.1.1.1.1.1.1.1) in the neutral and diprotonated states.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure_s2.png}
\caption{Comparison of the B3LYP, M06, \(\omega\)B97XD optimized geometries of the figure-eight conformation and the Möbius, overlaid with the X-ray structure of the neutral and diprotonated \textit{meso-octakis(pentafluorophenyl)} [36]octaphyrin. The all-heavy atom RMS (in Å) are displayed.}
\end{figure}

\begin{table}[h]
\centering
\caption{Root-mean-square deviations (RMS in Å) and mean absolute errors (MUE) of the DFT optimized geometries relative to the X-ray structure of diprotonated \textit{meso-octakis(pentafluorophenyl)} [36]octaphyrin.}
\begin{tabular}{lcccc}
\hline
Functionals &
\textit{T} & \textit{MUE} \text{bonds} & \text{MUE} \text{angles} & \text{MUE} \text{torsions} & \text{RMS} \text{heavy} \\
\hline
B3LYP & 0.033 & 1.259 & 3.453 & 0.272 & 0.620 \\
PBE & 0.036 & 1.290 & 3.419 & 0.256 & 0.523 \\
M06 & 0.034 & 1.279 & 3.542 & 0.243 & 0.606 \\
\(\omega\)B97XD & 0.036 & 1.322 & 3.766 & 0.332 & 0.887 \\
B3LYP-D & 0.033 & 1.322 & 3.488 & 0.270 & 0.583 \\
BP86 & 0.037 & 1.282 & 3.526 & 0.263 & 0.590 \\
\hline
\end{tabular}
\end{table}
Table S2. Torsional descriptors (Ψ_{MAX}, Ψ_{SMC} and Π) and bond-length alternation descriptors (Δr_{C,N}, Δr_{C,C} and HOMA) and the corresponding mean unsigned error relative to the X-ray structure of the Möbius [36]octaphyrin.[a]

<table>
<thead>
<tr>
<th>[36]T1</th>
<th>Ψ_{MAX}</th>
<th>Ψ_{SMC}</th>
<th>Π</th>
<th>Δr_{C,N}</th>
<th>Δr_{C,C}</th>
<th>HOMA</th>
<th>MUE Δr_{C,N}</th>
<th>MUE Δr_{C,C}</th>
<th>MUE HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX</td>
<td>34.638</td>
<td>11.353</td>
<td>-0.286</td>
<td>0.058</td>
<td>0.099</td>
<td>0.720</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B3LYP</td>
<td>32.145</td>
<td>9.773</td>
<td>-0.343</td>
<td>0.051</td>
<td>0.070</td>
<td>0.753</td>
<td>0.007</td>
<td>0.029</td>
<td>0.033</td>
</tr>
<tr>
<td>PBE</td>
<td>32.229</td>
<td>9.955</td>
<td>-0.340</td>
<td>0.063</td>
<td>0.081</td>
<td>0.661</td>
<td>0.005</td>
<td>0.018</td>
<td>0.059</td>
</tr>
<tr>
<td>M06</td>
<td>32.297</td>
<td>9.708</td>
<td>-0.338</td>
<td>0.060</td>
<td>0.113</td>
<td>0.698</td>
<td>0.002</td>
<td>0.015</td>
<td>0.022</td>
</tr>
<tr>
<td>ωB97XD</td>
<td>43.515</td>
<td>9.876</td>
<td>-0.260</td>
<td>0.092</td>
<td>0.115</td>
<td>0.576</td>
<td>0.034</td>
<td>0.016</td>
<td>0.144</td>
</tr>
<tr>
<td>B3LYP-D</td>
<td>30.701</td>
<td>9.559</td>
<td>-0.349</td>
<td>0.062</td>
<td>0.101</td>
<td>0.697</td>
<td>0.004</td>
<td>0.002</td>
<td>0.023</td>
</tr>
<tr>
<td>BP86</td>
<td>30.984</td>
<td>9.786</td>
<td>-0.356</td>
<td>0.062</td>
<td>0.08</td>
<td>0.645</td>
<td>0.004</td>
<td>0.019</td>
<td>0.075</td>
</tr>
</tbody>
</table>

[a] Ψ_{MAX} and Ψ_{SMC} are given in °; Δr_{C,N} and Δr_{C,C} in Å.

Table S3. Root-mean-square deviations (RMS in Å) and mean absolute errors (MUE) of the DFT optimized geometries relative to the X-ray structure of the neutral meso-octakis(pentafluorophenyl) [36]octaphyrin.

<table>
<thead>
<tr>
<th>[36]T2RX</th>
<th>MUE_{bonds}</th>
<th>MUE_{angles}</th>
<th>MUE_{torsions}</th>
<th>RMS_{Ag}</th>
<th>RMS_{heavy}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>0.037</td>
<td>0.951</td>
<td>2.926</td>
<td>0.206</td>
<td>0.724</td>
</tr>
<tr>
<td>PBE</td>
<td>0.041</td>
<td>1.313</td>
<td>3.110</td>
<td>0.174</td>
<td>0.665</td>
</tr>
<tr>
<td>M06</td>
<td>0.031</td>
<td>0.947</td>
<td>2.511</td>
<td>0.120</td>
<td>0.425</td>
</tr>
<tr>
<td>ωB97XD</td>
<td>0.035</td>
<td>0.956</td>
<td>2.406</td>
<td>0.192</td>
<td>0.438</td>
</tr>
<tr>
<td>B3LYP-D</td>
<td>0.034</td>
<td>1.008</td>
<td>2.679</td>
<td>0.196</td>
<td>0.542</td>
</tr>
<tr>
<td>BP86</td>
<td>0.045</td>
<td>1.030</td>
<td>2.817</td>
<td>0.133</td>
<td>0.665</td>
</tr>
</tbody>
</table>

Table S4. Torsional descriptors (Ψ_{MAX}, Ψ_{SMC} and Π) and bond-length alternation descriptors (Δr_{C,N}, Δr_{C,C} and HOMA) and the corresponding mean unsigned error relative to the X-ray structure of the twisted-Hückel conformations.

<table>
<thead>
<tr>
<th>[36]T2RX</th>
<th>Ψ_{MAX}</th>
<th>Ψ_{SMC}</th>
<th>Π</th>
<th>Δr_{C,N}</th>
<th>Δr_{C,C}</th>
<th>HOMA</th>
<th>MUE Δr_{C,N}</th>
<th>MUE Δr_{C,C}</th>
<th>MUE HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX</td>
<td>20.244</td>
<td>7.888</td>
<td>0.618</td>
<td>0.084</td>
<td>0.119</td>
<td>0.684</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B3LYP</td>
<td>19.177</td>
<td>6.114</td>
<td>0.699</td>
<td>0.059</td>
<td>0.095</td>
<td>0.697</td>
<td>0.025</td>
<td>0.024</td>
<td>0.014</td>
</tr>
<tr>
<td>PBE</td>
<td>16.439</td>
<td>6.636</td>
<td>0.680</td>
<td>0.041</td>
<td>0.078</td>
<td>0.690</td>
<td>0.043</td>
<td>0.041</td>
<td>0.006</td>
</tr>
<tr>
<td>M06</td>
<td>17.883</td>
<td>7.275</td>
<td>0.655</td>
<td>0.067</td>
<td>0.094</td>
<td>0.743</td>
<td>0.017</td>
<td>0.025</td>
<td>0.059</td>
</tr>
<tr>
<td>ωB97XD</td>
<td>16.375</td>
<td>7.625</td>
<td>0.631</td>
<td>0.088</td>
<td>0.115</td>
<td>0.596</td>
<td>0.004</td>
<td>0.005</td>
<td>0.068</td>
</tr>
<tr>
<td>B3LYP-D</td>
<td>15.700</td>
<td>7.432</td>
<td>0.630</td>
<td>0.065</td>
<td>0.092</td>
<td>0.727</td>
<td>0.019</td>
<td>0.027</td>
<td>0.043</td>
</tr>
<tr>
<td>BP86</td>
<td>16.627</td>
<td>6.427</td>
<td>0.691</td>
<td>0.042</td>
<td>0.079</td>
<td>0.667</td>
<td>0.042</td>
<td>0.040</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Figure S3. (a) Root-mean-square deviations (RMS) and (b) mean unsigned errors (MUE) for the bond-length alternation parameters of the DFT optimized geometries relative to the X-ray structure of the diprotonated meso-octakis(pentafluorophenyl) [36]octaphyrin.
Table S5. $\pi-\pi$ stacking interactions distances of crystallographic and DFT-optimized neutral meso-octakis(pentafluorophenyl) [36]octaphyrin in the figure-eight conformation.

<table>
<thead>
<tr>
<th>[36]T_{2nx}</th>
<th>RX</th>
<th>M06</th>
<th>B3LYP</th>
<th>B3LYP-D</th>
<th>wB97XD</th>
<th>BP86</th>
<th>PBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenyl-phenyl</td>
<td>3.13</td>
<td>3.13</td>
<td>3.22</td>
<td>3.06</td>
<td>3.20</td>
<td>3.27</td>
<td>3.59</td>
</tr>
<tr>
<td>pyrrol-pyrrol</td>
<td>3.41</td>
<td>3.33</td>
<td>3.71</td>
<td>3.06</td>
<td>3.52</td>
<td>3.61</td>
<td>3.23</td>
</tr>
<tr>
<td>pyrrol-phenyl</td>
<td>3.48</td>
<td>3.55</td>
<td>4.17</td>
<td>3.45</td>
<td>3.58</td>
<td>3.61</td>
<td>3.52</td>
</tr>
<tr>
<td>MUE</td>
<td>-</td>
<td>0.05</td>
<td>0.36</td>
<td>0.15</td>
<td>0.09</td>
<td>0.16</td>
<td>0.23</td>
</tr>
</tbody>
</table>

II. Dependence of the relative energies with the functional

Figure S4. Correlation between the relative energies (in kcal mol$^{-1}$) and the extent of II conjugation computed with B3LYP and M06 functionals for unsubstituted [36]octaphyrins.
Table S6. Relative and Gibbs free energies (in kcal mol\(^{-1}\)) together with the \(\pi\)-conjugation index (\(II\)) of the different conformations of neutral unsubstituted [36]octaphyrin 1 computed with M06 and B3LYP functionals.

<table>
<thead>
<tr>
<th>conf</th>
<th>(Tn^X)</th>
<th>M06(^a)</th>
<th>B3LYP(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{rel})</td>
<td>(\Delta G_{298})</td>
<td>(\Delta G_{THF})</td>
</tr>
<tr>
<td>1a</td>
<td>23.3</td>
<td>20.0</td>
<td>13.2</td>
</tr>
<tr>
<td>1b</td>
<td>43.7</td>
<td>41.3</td>
<td>47.3</td>
</tr>
<tr>
<td>1c</td>
<td>26.8</td>
<td>25.5</td>
<td>22.4</td>
</tr>
<tr>
<td>1e</td>
<td>47.1</td>
<td>45.0</td>
<td>40.1</td>
</tr>
<tr>
<td>1f</td>
<td>26.6</td>
<td>25.4</td>
<td>17.9</td>
</tr>
<tr>
<td>1g</td>
<td>17.3</td>
<td>17.3</td>
<td>12.5</td>
</tr>
<tr>
<td>1h</td>
<td>16.3</td>
<td>15.5</td>
<td>11.3</td>
</tr>
<tr>
<td>1i</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\[\text{MAD} = 6.3, 5.3, 5.6, 5.8\]

\(^a\) ZPE-corrected relative energies and Gibbs free energies at the M06/6-311+G(d,p)/M06/6-31G(d,p) level of theory.\(^b\) ZPE-corrected relative energies and Gibbs free energies at the B3LYP/6-311+G(d,p)/B3LYP/6-31G(d,p) level.\(^c\) MAD is the mean absolute difference of the energies computed with both functionals.

Figure S5. Correlation between the Gibbs free energy (in kcal mol\(^{-1}\)) computed with B3LYP and M06 in gas-phase and DMSO.

Figure S6. Correlation between the Gibbs free energy and the relative energy (in kcal mol\(^{-1}\)) computed with B3LYP and M06, respectively.
III. Conformational analysis of neutral unsubstituted [36]octaphyrin

Table S7. Relative energies (E_{rel} in kcal mol$^{-1}$), relative Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), p-conjugation index (Π), ring strain (Φ_p and Ψ_{SMC}) and bond-length alternation (Δr_{C-C} and Δr_{C-N}) of the conformers of the neutral unsubstituted [36]octaphyrin.

<table>
<thead>
<tr>
<th>conformers</th>
<th>E_{rel}[a]</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>Ψ_{SMC}</th>
<th>Φ_p</th>
<th>Π</th>
<th>Δr_{C-M}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>23.3</td>
<td>20.0</td>
<td>3</td>
<td>3.54</td>
<td>13.0</td>
<td>0.83</td>
<td>0.055</td>
<td>0.094</td>
</tr>
<tr>
<td>1b</td>
<td>43.9</td>
<td>41.3</td>
<td>1</td>
<td>5.23</td>
<td>16.9</td>
<td>0.76</td>
<td>0.063</td>
<td>0.100</td>
</tr>
<tr>
<td>1c</td>
<td>26.8</td>
<td>25.5</td>
<td>3</td>
<td>7.57</td>
<td>23.6</td>
<td>0.58</td>
<td>0.061</td>
<td>0.096</td>
</tr>
<tr>
<td>1d</td>
<td>32.0</td>
<td>31.4</td>
<td>3</td>
<td>8.66</td>
<td>27.3</td>
<td>0.47</td>
<td>0.064</td>
<td>0.097</td>
</tr>
<tr>
<td>1e</td>
<td>54.6</td>
<td>45.5</td>
<td>0</td>
<td>9.56</td>
<td>30.3</td>
<td>-0.35</td>
<td>0.058</td>
<td>0.089</td>
</tr>
<tr>
<td>1f</td>
<td>26.6</td>
<td>25.4</td>
<td>2.5</td>
<td>7.58</td>
<td>31.5</td>
<td>-0.57</td>
<td>0.062</td>
<td>0.098</td>
</tr>
<tr>
<td>1g</td>
<td>17.3</td>
<td>17.3</td>
<td>3</td>
<td>4.70</td>
<td>18.4</td>
<td>0.76</td>
<td>0.064</td>
<td>0.090</td>
</tr>
<tr>
<td>1h</td>
<td>16.3</td>
<td>15.5</td>
<td>3</td>
<td>4.70</td>
<td>15.0</td>
<td>0.80</td>
<td>0.054</td>
<td>0.095</td>
</tr>
<tr>
<td>1i</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
<td>4.28</td>
<td>15.1</td>
<td>0.78</td>
<td>0.052</td>
<td>0.090</td>
</tr>
<tr>
<td>1j</td>
<td>26.9</td>
<td>26.5</td>
<td>3</td>
<td>10.36</td>
<td>31.5</td>
<td>-0.35</td>
<td>0.051</td>
<td>0.084</td>
</tr>
<tr>
<td>1k</td>
<td>55.6</td>
<td>41.8</td>
<td>0</td>
<td>6.45</td>
<td>34.9</td>
<td>0.59</td>
<td>0.065</td>
<td>0.102</td>
</tr>
<tr>
<td>1l</td>
<td>46.8</td>
<td>45.2</td>
<td>1</td>
<td>9.60</td>
<td>33.9</td>
<td>-0.42</td>
<td>0.091</td>
<td>0.115</td>
</tr>
<tr>
<td>1m</td>
<td>11.0</td>
<td>10.6</td>
<td>3.5</td>
<td>5.75</td>
<td>16.3</td>
<td>0.64</td>
<td>0.103</td>
<td>0.093</td>
</tr>
</tbody>
</table>

[a] ZPE-corrected relative energies and Gibbs free energies at the M06/6-311+G(d,p)//M06/6-31G(d,p) level of theory

Figure S7. Relationship between the relative energy and the Gibbs free energies of neutral [36]octaphyrin conformers (1a-m) and the hydrogen bonding index (N_H).
Figure S8. Relationship between the Gibbs free energies of neutral [36]octaphyrin conformers (1a-m) and the torsional ring strain (Φr).

Figure S9. Evolution of the Gibbs free energy with the solvent computed at M06/6-311+G(d,p) (left) and at B3LYP/6-311+G(d,p) (right) level of theory.
<table>
<thead>
<tr>
<th>conf</th>
<th>Tn²</th>
<th>Eₑₑ[a]</th>
<th>ΔG₂₀₈</th>
<th>Nᵣ</th>
<th>Ψₛ</th>
<th>ΔG₉₆F</th>
<th>ΔG₀DCM</th>
<th>ΔG₀MSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>T₀</td>
<td>11.5</td>
<td>12.0</td>
<td>3</td>
<td>11.8</td>
<td>5.9</td>
<td>5.1</td>
<td>4.4</td>
</tr>
<tr>
<td>1b</td>
<td>T₁</td>
<td>49.0</td>
<td>51.7</td>
<td>0</td>
<td>23.1</td>
<td>38.4</td>
<td>37.2</td>
<td>35.6</td>
</tr>
<tr>
<td>1c</td>
<td>T₀</td>
<td>18.8</td>
<td>19.2</td>
<td>3</td>
<td>33.1</td>
<td>16.8</td>
<td>16.4</td>
<td>16.9</td>
</tr>
<tr>
<td>1d</td>
<td>T₀</td>
<td>22.9</td>
<td>23.6</td>
<td>3</td>
<td>39.0</td>
<td>19.9</td>
<td>19.2</td>
<td>19.6</td>
</tr>
<tr>
<td>1e</td>
<td>T₁</td>
<td>40.8</td>
<td>42.3</td>
<td>0</td>
<td>34.3</td>
<td>30.7</td>
<td>29.6</td>
<td>28.7</td>
</tr>
<tr>
<td>1f</td>
<td>T₁</td>
<td>17.1</td>
<td>18.3</td>
<td>2.5</td>
<td>31.1</td>
<td>11.6</td>
<td>11.0</td>
<td>10.4</td>
</tr>
<tr>
<td>1g</td>
<td>T₁</td>
<td>11.7</td>
<td>12.1</td>
<td>3</td>
<td>18.1</td>
<td>7.3</td>
<td>6.7</td>
<td>6.2</td>
</tr>
<tr>
<td>1h</td>
<td>T₁</td>
<td>12.1</td>
<td>13.0</td>
<td>3</td>
<td>17.4</td>
<td>9.2</td>
<td>8.8</td>
<td>8.0</td>
</tr>
<tr>
<td>1i</td>
<td>T₂₀ₓ</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
<td>14.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1j</td>
<td>T₁</td>
<td>19.3</td>
<td>20.5</td>
<td>3</td>
<td>30.5</td>
<td>17.0</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>1k</td>
<td>T₁</td>
<td>31.3</td>
<td>32.2</td>
<td>1</td>
<td>18.5</td>
<td>23.8</td>
<td>22.9</td>
<td>22.5</td>
</tr>
<tr>
<td>1l</td>
<td>T₁</td>
<td>32.7</td>
<td>34.4</td>
<td>1</td>
<td>33.8</td>
<td>25.4</td>
<td>24.4</td>
<td>24.1</td>
</tr>
<tr>
<td>1m</td>
<td>T₁</td>
<td>8.0</td>
<td>8.3</td>
<td>3.5</td>
<td>19.8</td>
<td>6.0</td>
<td>5.7</td>
<td>5.7</td>
</tr>
</tbody>
</table>

[a] ZPE-corrected relative energies and Gibbs free energies at the B3LYP/6-311+G(d,p)/B3LYP/6-31G(d,p) level of theory.

<table>
<thead>
<tr>
<th>conformers</th>
<th>T₀</th>
<th>Eₑₑ[a]</th>
<th>Nᵣ</th>
<th>Ψₛ ∈ GₛₐC</th>
<th>Ψₛ</th>
<th>ΔG₂₀₈</th>
<th>ΔG₀DCM</th>
<th>ΔG₀MSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>T₀</td>
<td>11.5</td>
<td>3</td>
<td>3.34</td>
<td>11.8</td>
<td>0.86</td>
<td>0.049</td>
<td>0.092</td>
</tr>
<tr>
<td>1b</td>
<td>T₀</td>
<td>49.0</td>
<td>0</td>
<td>6.38</td>
<td>23.1</td>
<td>0.63</td>
<td>0.010</td>
<td>0.063</td>
</tr>
<tr>
<td>1c</td>
<td>T₀</td>
<td>18.8</td>
<td>3</td>
<td>7.64</td>
<td>33.1</td>
<td>0.56</td>
<td>0.059</td>
<td>0.094</td>
</tr>
<tr>
<td>1d</td>
<td>T₀</td>
<td>22.9</td>
<td>3</td>
<td>8.14</td>
<td>39.0</td>
<td>0.49</td>
<td>0.067</td>
<td>0.099</td>
</tr>
<tr>
<td>1e</td>
<td>T₁</td>
<td>40.8</td>
<td>0</td>
<td>9.63</td>
<td>34.3</td>
<td>-0.36</td>
<td>0.096</td>
<td>0.105</td>
</tr>
<tr>
<td>1f</td>
<td>T₁</td>
<td>17.1</td>
<td>2.5</td>
<td>7.69</td>
<td>31.1</td>
<td>-0.58</td>
<td>0.044</td>
<td>0.080</td>
</tr>
<tr>
<td>1g</td>
<td>T₁</td>
<td>11.7</td>
<td>3</td>
<td>5.21</td>
<td>18.1</td>
<td>0.76</td>
<td>0.103</td>
<td>0.090</td>
</tr>
<tr>
<td>1h</td>
<td>T₁</td>
<td>12.1</td>
<td>3</td>
<td>5.23</td>
<td>17.4</td>
<td>0.76</td>
<td>0.052</td>
<td>0.118</td>
</tr>
<tr>
<td>1i</td>
<td>T₂₀ₓ</td>
<td>0.0</td>
<td>4</td>
<td>4.28</td>
<td>14.6</td>
<td>0.82</td>
<td>0.050</td>
<td>0.114</td>
</tr>
<tr>
<td>1j</td>
<td>T₁</td>
<td>19.3</td>
<td>3</td>
<td>10.56</td>
<td>30.5</td>
<td>-0.37</td>
<td>0.034</td>
<td>0.073</td>
</tr>
<tr>
<td>1k</td>
<td>T₁</td>
<td>31.3</td>
<td>1</td>
<td>5.26</td>
<td>18.5</td>
<td>0.76</td>
<td>0.106</td>
<td>0.101</td>
</tr>
<tr>
<td>1l</td>
<td>T₁</td>
<td>32.7</td>
<td>1</td>
<td>9.62</td>
<td>33.8</td>
<td>-0.44</td>
<td>0.030</td>
<td>0.082</td>
</tr>
<tr>
<td>1m</td>
<td>T₁</td>
<td>8.0</td>
<td>3.5</td>
<td>5.39</td>
<td>19.8</td>
<td>0.66</td>
<td>0.099</td>
<td>0.093</td>
</tr>
</tbody>
</table>

[a] Eₑₑ corresponds to the sum of the electronic energy computed at the B3LYP/6-311+G(d,p) level of theory and the zero-point vibrational energy obtained at the B3LYP/6-31G(d,p) level.
IV. Interconversion pathways of neutral unsubstituted [36]octaphyrin

Figure S10. Activation energy barriers (ΔG^\ddagger in kcal mol$^{-1}$) for the interconversions between the most relevant conformations in 1 computed at the M06/6-311+G(d,p)/M06/6-31G(d,p) level of theory. The relative Gibbs free energies of the different conformations with respect the global minima (T_2_{RX}) are also shown.

Figure S11. M06/6-31G(d,p) relaxed potential energy surface for the figure-eight conformation 1m (T_2^{th}) obtained by rotating the dihedral angles ϕ_1 and ϕ_2 (in °). The fully optimized geometries for the different minima and the corresponding Gibbs free energies and activation barriers (ΔG^\ddagger in kcal mol$^{-1}$) with respect to 1m are also shown.
Figure S12. M06/6-31G(d,p) potential energy curve for the figure-eight/Möbius interconversion in 1 as a function of dihedral angle ϕ_1. The fully optimized geometries for the different minima and the corresponding relative Gibbs free energy and the activation barrier (ΔG^\dagger in kcal mol$^{-1}$) with respect to 1g are also shown.

Figure S13. M06/6-31G(d,p) potential energy curve for the Hückel/Möbius interconversions in 1 as a function of dihedral angle ϕ_1. The fully optimized geometries for the different minima and the corresponding relative Gibbs free energy and the activation barrier (ΔG^\dagger in kcal mol$^{-1}$) with respect to 1k are also shown.
V. Substituent effect on the conformation of neutral [36]octaphyrins

Figure S14. Dependence of the relative energy on the intramolecular hydrogen bonding index (N_H) for unsubstituted (top) and substituted [36]octaphyrins (bottom).

Figure S15. Dependence of the relative energy on the torsional ring strain (in degrees) for substituted [36]octaphyrins.
Table S10. Relative energies (E_{rel}), Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), ring strain (Φ_p and Ψ), π-conjugation index (Π) and bond-length alternation (Δr_{C-C} and Δr_{C-N}) of the neutral meso-trifluoromethyl-substituted [36]octaphyrins (R = CF$_3$).

<table>
<thead>
<tr>
<th>Conformers</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>Φ_p</th>
<th>Ψ</th>
<th>Π</th>
<th>Δr_{C-N}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_0^{5,10,25,30}$</td>
<td>8.8</td>
<td>6.7</td>
<td>3</td>
<td>28.7</td>
<td>8.3</td>
<td>0.48</td>
<td>0.069</td>
<td>0.102</td>
</tr>
<tr>
<td>$T_0^{B,C,E,F,H}$</td>
<td>49.9</td>
<td>41.2</td>
<td>0</td>
<td>32.9</td>
<td>8.8</td>
<td>0.35</td>
<td>0.068</td>
<td>0.109</td>
</tr>
<tr>
<td>$T_0^{5,20,25,B,F}$</td>
<td>10.0</td>
<td>5.2</td>
<td>3</td>
<td>31.6</td>
<td>10.2</td>
<td>0.30</td>
<td>0.075</td>
<td>0.107</td>
</tr>
<tr>
<td>$T_1^{B,C,E,H}$</td>
<td>20.0</td>
<td>30.1</td>
<td>2.5</td>
<td>36.8</td>
<td>9.7</td>
<td>-0.39</td>
<td>0.064</td>
<td>0.101</td>
</tr>
<tr>
<td>$T_1^{B,C,F}$</td>
<td>39.2</td>
<td>14.8</td>
<td>0</td>
<td>32.2</td>
<td>9.6</td>
<td>-0.30</td>
<td>0.131</td>
<td>0.102</td>
</tr>
<tr>
<td>$T_2^{B,F}$</td>
<td>13.2</td>
<td>10.1</td>
<td>3</td>
<td>26.8</td>
<td>8.4</td>
<td>0.46</td>
<td>0.076</td>
<td>0.104</td>
</tr>
<tr>
<td>$T_2^{C,G}$</td>
<td>7.3</td>
<td>3.9</td>
<td>3</td>
<td>21.3</td>
<td>6.5</td>
<td>0.53</td>
<td>0.061</td>
<td>0.104</td>
</tr>
<tr>
<td>T_2^{RX}</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
<td>29.3</td>
<td>9.8</td>
<td>0.46</td>
<td>0.073</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Table S11. Relative energies (E_{rel}), Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), ring strain (Φ_p) and π-conjugation index (Π) of the neutral meso-aryl-substituted [36]octaphyrins.

<table>
<thead>
<tr>
<th>Conformation</th>
<th>$-\text{C}6\text{F}{5}$</th>
<th>$-\text{C}6\text{H}{3}\text{Cl}_2$</th>
<th>$-\text{C}_6\text{F}_3\text{-}F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{rel}</td>
<td>ΔG_{298}</td>
<td>N_H</td>
<td>Φ_p</td>
</tr>
<tr>
<td>a</td>
<td>$T_0^{5,10,25,30}$</td>
<td>16.6</td>
<td>16.8</td>
</tr>
<tr>
<td>b</td>
<td>$T_0^{B,C,E,F,H}$</td>
<td>48.7</td>
<td>41.4</td>
</tr>
<tr>
<td>c</td>
<td>$T_0^{5,20,25,B,F}$</td>
<td>20.2</td>
<td>18.3</td>
</tr>
<tr>
<td>d</td>
<td>$T_1^{B,C,F}$</td>
<td>19.3</td>
<td>10.1</td>
</tr>
<tr>
<td>e</td>
<td>$T_1^{B,C,E,H}$</td>
<td>50.1</td>
<td>40.6</td>
</tr>
<tr>
<td>i</td>
<td>T_2^{RX}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>h</td>
<td>$T_2^{C,G}$</td>
<td>9.9</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Figure S16. Evolution of the Gibbs free energy with the substituents at meso and β-positions, computed at the M06/6-311+G(d,p) level of theory.

Figure S17. The most stable conformations for meso-octakis(methoxy) [36]octaphyrin in neutral state. Intramolecular hydrogen bonds together with the torsional descriptors and the Gibbs free energies at the M06/6-311+G(d,p)//M06/6-31G(d,p) level of theory are also shown.
VI. Conformational changes upon protonation and redox reactions

![Diagram of octaphyrin structures](image)

Figure S18. Oxidation states available for the regular [36]octaphyrin.

Table S12. Relative energies (E_{rel}), Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), ring strain (ϕ_p and ψ), π-conjugation index (Π) and bond-length alternation (Δr_{C-C}) of the neutral unsubstituted [34]octaphyrins 3.

<table>
<thead>
<tr>
<th>Conformers</th>
<th>T_n^3</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>ψ_{SMC}</th>
<th>ϕ_p</th>
<th>Π</th>
<th>Δr_{C-N}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>$T_0^{5,10,25,30}$</td>
<td>17.0</td>
<td>14.8</td>
<td>3</td>
<td>4.43</td>
<td>14.72</td>
<td>0.79</td>
<td>0.05</td>
<td>0.060</td>
</tr>
<tr>
<td>2b</td>
<td>$T_0^{B,C,E,F,H}$</td>
<td>50.0</td>
<td>48.8</td>
<td>0</td>
<td>5.9</td>
<td>22.5</td>
<td>0.59</td>
<td>0.038</td>
<td>0.085</td>
</tr>
<tr>
<td>2c</td>
<td>$T_0^{5,20,25,30}$</td>
<td>16.8</td>
<td>16.5</td>
<td>3</td>
<td>6.7</td>
<td>34.9</td>
<td>0.59</td>
<td>0.034</td>
<td>0.078</td>
</tr>
<tr>
<td>2d</td>
<td>$T_0^{20,25,30}$</td>
<td>21.0</td>
<td>20.4</td>
<td>3</td>
<td>8.0</td>
<td>38.8</td>
<td>0.51</td>
<td>-0.30</td>
<td>0.069</td>
</tr>
<tr>
<td>2e</td>
<td>$T_1^{B,F,H}$</td>
<td>53.9</td>
<td>39.6</td>
<td>0</td>
<td>10.6</td>
<td>33.3</td>
<td>-0.33</td>
<td>0.080</td>
<td>0.100</td>
</tr>
<tr>
<td>2f</td>
<td>$T_1^{B,C,F}$</td>
<td>17.1</td>
<td>16.6</td>
<td>2.5</td>
<td>7.7</td>
<td>30.8</td>
<td>-0.56</td>
<td>0.090</td>
<td>0.130</td>
</tr>
<tr>
<td>2g</td>
<td>$T_2^{B,F}$</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
<td>4.8</td>
<td>15.9</td>
<td>0.83</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>2h</td>
<td>$T_2^{C,G}$</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
<td>4.8</td>
<td>15.9</td>
<td>0.79</td>
<td>0.050</td>
<td>0.090</td>
</tr>
<tr>
<td>2i</td>
<td>T_2^{RX}</td>
<td>6.4</td>
<td>6.5</td>
<td>3</td>
<td>5.4</td>
<td>16.0</td>
<td>0.81</td>
<td>0.009</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Table S13. Relative energies (E_{rel}), Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), ring strain (ϕ_p and ψ), π-conjugation index (Π) and bond-length alternation (Δr_{C-C}) of the neutral unsubstituted [38]octaphyrin 3.

<table>
<thead>
<tr>
<th>Conformers</th>
<th>T_n^3</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>ψ_{SMC}</th>
<th>ϕ_p</th>
<th>Π</th>
<th>Δr_{C-N}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>$T_0^{5,10,25,30}$</td>
<td>17.0</td>
<td>14.8</td>
<td>3</td>
<td>4.43</td>
<td>14.72</td>
<td>0.79</td>
<td>0.05</td>
<td>0.060</td>
</tr>
<tr>
<td>3b</td>
<td>$T_0^{B,C,E,F,H}$</td>
<td>50.0</td>
<td>48.8</td>
<td>0</td>
<td>5.9</td>
<td>22.5</td>
<td>0.59</td>
<td>0.038</td>
<td>0.085</td>
</tr>
<tr>
<td>3c</td>
<td>$T_0^{20,25,30}$</td>
<td>16.8</td>
<td>16.5</td>
<td>3</td>
<td>6.7</td>
<td>34.9</td>
<td>0.59</td>
<td>0.034</td>
<td>0.078</td>
</tr>
<tr>
<td>3d</td>
<td>$T_0^{20,25,30}$</td>
<td>21.0</td>
<td>20.4</td>
<td>3</td>
<td>8.0</td>
<td>38.8</td>
<td>0.51</td>
<td>-0.30</td>
<td>0.069</td>
</tr>
<tr>
<td>3e</td>
<td>$T_1^{B,F,H}$</td>
<td>53.9</td>
<td>39.6</td>
<td>0</td>
<td>9.5</td>
<td>35.1</td>
<td>-0.30</td>
<td>0.069</td>
<td>0.094</td>
</tr>
<tr>
<td>3f</td>
<td>$T_1^{B,C,F}$</td>
<td>26.9</td>
<td>16.6</td>
<td>2.5</td>
<td>6.7</td>
<td>28.7</td>
<td>-0.56</td>
<td>0.110</td>
<td>0.100</td>
</tr>
<tr>
<td>3g</td>
<td>$T_2^{B,F}$</td>
<td>7.2</td>
<td>7.9</td>
<td>3.0</td>
<td>5.2</td>
<td>20.2</td>
<td>0.78</td>
<td>0.004</td>
<td>0.056</td>
</tr>
<tr>
<td>3h</td>
<td>$T_2^{C,G}$</td>
<td>7.0</td>
<td>6.8</td>
<td>3.0</td>
<td>7.9</td>
<td>14.9</td>
<td>0.81</td>
<td>0.050</td>
<td>0.070</td>
</tr>
<tr>
<td>3i</td>
<td>T_2^{RX}</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>4.6</td>
<td>16.0</td>
<td>0.81</td>
<td>0.009</td>
<td>0.058</td>
</tr>
</tbody>
</table>
Table S14. Relative energies (E_{rel}), Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), ring strain (Φ_p and Ψ), π-conjugation index (Π) and bond-length alternation (Δr_{C-N} and Δr_{C-C}) of the diprotonated unsubstituted [36]octaphyrin 4.

<table>
<thead>
<tr>
<th>conformers</th>
<th>T_n^χ</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>Ψ_{SMC}</th>
<th>Φ_p</th>
<th>Π</th>
<th>Δr_{C-N}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>$T_0^{8,10,25,30}$</td>
<td>5.5</td>
<td>4.3</td>
<td>3</td>
<td>4.9</td>
<td>16.4</td>
<td>0.74</td>
<td>0.054</td>
<td>0.094</td>
</tr>
<tr>
<td>4b</td>
<td>$T_0^{B,C,E,F,H}$</td>
<td>36.8</td>
<td>34.7</td>
<td>0</td>
<td>7.0</td>
<td>26.1</td>
<td>0.52</td>
<td>0.069</td>
<td>0.089</td>
</tr>
<tr>
<td>4c</td>
<td>$T_0^{5,20,25,8,F}$</td>
<td>11.1</td>
<td>9.7</td>
<td>3</td>
<td>6.8</td>
<td>28.1</td>
<td>0.6</td>
<td>0.089</td>
<td>0.076</td>
</tr>
<tr>
<td>4d</td>
<td>$T_0^{20,25,8,F}$</td>
<td>15.3</td>
<td>14.8</td>
<td>3</td>
<td>9.2</td>
<td>29.5</td>
<td>0.43</td>
<td>0.030</td>
<td>0.100</td>
</tr>
<tr>
<td>4e</td>
<td>$T_1^{B,C,E,H}$</td>
<td>30.9</td>
<td>29.7</td>
<td>0</td>
<td>9.7</td>
<td>38.8</td>
<td>-0.39</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>4f</td>
<td>$T_1^{B,C,F}$</td>
<td>3.6</td>
<td>2.7</td>
<td>2.5</td>
<td>7.7</td>
<td>29.5</td>
<td>-0.58</td>
<td>0.040</td>
<td>0.080</td>
</tr>
<tr>
<td>4g</td>
<td>$T_2^{B,F}$</td>
<td>0.2</td>
<td>0.3</td>
<td>3</td>
<td>4.3</td>
<td>15.8</td>
<td>0.81</td>
<td>0.090</td>
<td>0.080</td>
</tr>
<tr>
<td>4h</td>
<td>$T_2^{C,G}$</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
<td>4.6</td>
<td>17.1</td>
<td>0.80</td>
<td>0.080</td>
<td>0.110</td>
</tr>
<tr>
<td>4i</td>
<td>T_2^{RX}</td>
<td>1.6</td>
<td>3.4</td>
<td>3</td>
<td>4.9</td>
<td>17.4</td>
<td>0.73</td>
<td>0.069</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Table S15. Relative energies (E_{rel}), Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$), hydrogen bonding index (N_H), ring strain (Φ_p and Ψ), π-conjugation index (Π) and bond-length alternation (Δr_{C-N} and Δr_{C-C}) of the diprotonated unsubstituted [38]octaphyrin 5.

<table>
<thead>
<tr>
<th>conformers</th>
<th>T_n^χ</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>Ψ_{SMC}</th>
<th>Φ_p</th>
<th>Π</th>
<th>Δr_{C-N}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>$T_0^{5,10,25,30}$</td>
<td>10.9</td>
<td>10.2</td>
<td>-</td>
<td>4.5</td>
<td>16.4</td>
<td>0.76</td>
<td>0.002</td>
<td>0.054</td>
</tr>
<tr>
<td>5b</td>
<td>$T_0^{B,C,E,F,H}$</td>
<td>6.5</td>
<td>4.9</td>
<td>-</td>
<td>6.6</td>
<td>25.1</td>
<td>0.56</td>
<td>0.004</td>
<td>0.064</td>
</tr>
<tr>
<td>5c</td>
<td>$T_0^{5,20,25,8,F}$</td>
<td>10.7</td>
<td>10.5</td>
<td>-</td>
<td>7.2</td>
<td>28.6</td>
<td>0.51</td>
<td>0.018</td>
<td>0.075</td>
</tr>
<tr>
<td>5d</td>
<td>$T_0^{20,25,8,F}$</td>
<td>15.5</td>
<td>13.7</td>
<td>-</td>
<td>7.5</td>
<td>35.7</td>
<td>0.50</td>
<td>0.021</td>
<td>0.079</td>
</tr>
<tr>
<td>5e</td>
<td>$T_1^{B,C,E,H}$</td>
<td>14.4</td>
<td>13.0</td>
<td>-</td>
<td>10.0</td>
<td>33.3</td>
<td>-0.29</td>
<td>0.032</td>
<td>0.095</td>
</tr>
<tr>
<td>5f</td>
<td>$T_1^{B,C,F}$</td>
<td>10.9</td>
<td>9.2</td>
<td>-</td>
<td>7.1</td>
<td>28.5</td>
<td>-0.48</td>
<td>0.035</td>
<td>0.097</td>
</tr>
<tr>
<td>5g</td>
<td>$T_2^{B,F}$</td>
<td>2.9</td>
<td>2.2</td>
<td>-</td>
<td>6.2</td>
<td>17.5</td>
<td>0.64</td>
<td>0.002</td>
<td>0.052</td>
</tr>
<tr>
<td>5h</td>
<td>$T_2^{C,G}$</td>
<td>5.1</td>
<td>4.6</td>
<td>-</td>
<td>6.1</td>
<td>20.2</td>
<td>0.66</td>
<td>0.007</td>
<td>0.054</td>
</tr>
<tr>
<td>5i</td>
<td>T_2^{RX}</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>4.4</td>
<td>14.1</td>
<td>0.79</td>
<td>0.006</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Figure S19. Dependence of the relative energy on the intramolecular hydrogen bonds of neutral unsubstituted [34] (top) and [38] octaphyrins (bottom).

Figure S20. Dependence of the relative energy on the ring strain of neutral unsubstituted [34] (left) and [38]octaphyrins (right).

Figure S21. Structural features of the neutral unsubstituted [34], [36] and [38]octaphyrins in the figure-eight $T_{2\text{ax}}$ conformation.
Figure S22. NCI analysis of the neutral unsubstituted [34] and [38]octaphyrins with a twisted-Hückel topology. (a) Plot of the reduced density gradient $\nabla\rho$ and (b) gradient isosurface ($s = 0.5$). The surfaces are coloured according to $\text{sign}(\lambda_2)\rho$ over the range -0.03 to 0.03 a.u.

Figure S23. Dependence of the relative energy on the ring strain of diprotonated unsubstituted [38]octaphyrin 5.
Figure S24. Structural features of neutral [36] and diprotonated [36] and [38]octaphyrins in the figure-eight conformation.

Figure S25. NCI analysis of the diprotonated unsubstituted [36] and [38]octaphyrins with a twisted-Hückel topology. (a) Plot of the reduced density gradient $s(\rho)$ and (b) gradient isosurface ($s = 0.5$). The surfaces are coloured according to $\text{sign}(\lambda_2)\rho$ over the range -0.03 to 0.03 a.u.
VII. Conformational changes of meso-octakis(pentafluorophenyl) octa­phyrins upon protonation and redox reactions

Table S16. Relative energies (E_{rel}) and Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$) in gas-phase and DCM solvent, hydrogen bonding index (N_h), ring strain (Φ), π-conjugation index (Π) and bond-length alternation (Δr_{CC} and Δr_{CN}) of the neutral meso-octakis(pentafluorophenyl)-substituted [36]octa­phyrins 6.

<table>
<thead>
<tr>
<th>conformers</th>
<th>E_{rel}</th>
<th>E_{rel}^{DCM}</th>
<th>ΔG_{298}</th>
<th>ΔG_{298}^{DCM}</th>
<th>N_h</th>
<th>Φ</th>
<th>Π</th>
<th>Δr_{CN}</th>
<th>Δr_{CC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>16.6</td>
<td>14.2</td>
<td>16.8</td>
<td>14.4</td>
<td>3</td>
<td>30.6</td>
<td>0.38</td>
<td>0.062</td>
<td>0.113</td>
</tr>
<tr>
<td>6b</td>
<td>48.7</td>
<td>30.7</td>
<td>41.4</td>
<td>23.4</td>
<td>0</td>
<td>35.6</td>
<td>0.47</td>
<td>0.061</td>
<td>0.101</td>
</tr>
<tr>
<td>6c</td>
<td>20.2</td>
<td>18.0</td>
<td>18.3</td>
<td>16.2</td>
<td>3</td>
<td>27.1</td>
<td>0.45</td>
<td>0.062</td>
<td>0.100</td>
</tr>
<tr>
<td>6d</td>
<td>29.7</td>
<td>27.5</td>
<td>25.4</td>
<td>23.2</td>
<td>3</td>
<td>31.6</td>
<td>0.19</td>
<td>0.087</td>
<td>0.127</td>
</tr>
<tr>
<td>6e</td>
<td>50.1</td>
<td>33.6</td>
<td>40.6</td>
<td>24.1</td>
<td>0</td>
<td>33.9</td>
<td>-0.04</td>
<td>0.064</td>
<td>0.979</td>
</tr>
<tr>
<td>6f</td>
<td>19.3</td>
<td>11.0</td>
<td>10.1</td>
<td>1.8</td>
<td>2.5</td>
<td>27.1</td>
<td>-0.48</td>
<td>0.024</td>
<td>0.070</td>
</tr>
<tr>
<td>6h</td>
<td>9.9</td>
<td>6.23</td>
<td>5.4</td>
<td>1.2</td>
<td>3</td>
<td>22.0</td>
<td>0.65</td>
<td>0.067</td>
<td>0.094</td>
</tr>
<tr>
<td>6i</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
<td>21.6</td>
<td>0.60</td>
<td>0.056</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Table S17. Relative energies (E_{rel}) and Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$) in gas-phase and DCM solvent, hydrogen bonding index (N_h), ring strain (Φ), π-conjugation index (Π) and bond-length alternation (Δr_{CC} and Δr_{CN}) of the neutral meso-octakis(pentafluorophenyl)-substituted [36]octa­phyrins 7.

<table>
<thead>
<tr>
<th>conformers</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_h</th>
<th>Φ</th>
<th>Π</th>
<th>Δr_{CN}</th>
<th>Δr_{CC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>13.1 (14.3)</td>
<td>16.7(17.9)</td>
<td>3</td>
<td>30.3</td>
<td>0.38</td>
<td>0.015</td>
<td>0.073</td>
</tr>
<tr>
<td>7b</td>
<td>43.1 (28.3)</td>
<td>39.4 (24.6)</td>
<td>0</td>
<td>31.2</td>
<td>0.45</td>
<td>0.037</td>
<td>0.083</td>
</tr>
<tr>
<td>7c</td>
<td>7.0 (7.5)</td>
<td>7.3 (8.7)</td>
<td>3</td>
<td>37.6</td>
<td>0.45</td>
<td>0.039</td>
<td>0.079</td>
</tr>
<tr>
<td>7d</td>
<td>17.9 (19.7)</td>
<td>19.5 (21.4)</td>
<td>3</td>
<td>32.4</td>
<td>0.25</td>
<td>0.045</td>
<td>0.118</td>
</tr>
<tr>
<td>7e</td>
<td>49.0 (37.0)</td>
<td>44.1 (31.2)</td>
<td>0</td>
<td>48.1</td>
<td>-0.21</td>
<td>0.067</td>
<td>0.093</td>
</tr>
<tr>
<td>7f</td>
<td>17.4 (13.0)</td>
<td>12.3 (8.0)</td>
<td>2.5</td>
<td>28.6</td>
<td>-0.39</td>
<td>0.054</td>
<td>0.102</td>
</tr>
<tr>
<td>7h</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>3</td>
<td>24.1</td>
<td>0.55</td>
<td>0.006</td>
<td>0.052</td>
</tr>
<tr>
<td>7i</td>
<td>5.3 (6.4)</td>
<td>7.5 (8.6)</td>
<td>3</td>
<td>21.1</td>
<td>0.57</td>
<td>0.012</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Table S18. Relative energies (E_{rel}) and Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$) in gas-phase and TFA solvent, hydrogen bonding index (N_h), ring strain (Φ), π-conjugation index (Π) and bond-length alternation (Δr_{CC} and Δr_{CN}) of the diprotonated meso-octakis(pentafluorophenyl)-substituted [36]octa­phyrins 8.

<table>
<thead>
<tr>
<th>conformers</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_h</th>
<th>Φ</th>
<th>Π</th>
<th>Δr_{CN}</th>
<th>Δr_{CC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>2.0 (5.8)</td>
<td>4.9 (8.6)</td>
<td>3</td>
<td>31.3</td>
<td>0.34</td>
<td>0.104</td>
<td>0.104</td>
</tr>
<tr>
<td>8b</td>
<td>34.9 (26.0)</td>
<td>32.6 (23.6)</td>
<td>0</td>
<td>35.2</td>
<td>0.34</td>
<td>0.087</td>
<td>0.087</td>
</tr>
<tr>
<td>8c</td>
<td>5.1 (10.7)</td>
<td>8.1 (13.6)</td>
<td>3</td>
<td>39.6</td>
<td>0.43</td>
<td>0.086</td>
<td>0.086</td>
</tr>
<tr>
<td>8d</td>
<td>22.4 (24.5)</td>
<td>24.5 (22.8)</td>
<td>3</td>
<td>38.6</td>
<td>0.31</td>
<td>0.024</td>
<td>0.084</td>
</tr>
<tr>
<td>8e</td>
<td>32.7 (26.8)</td>
<td>26.8 (23.1)</td>
<td>0</td>
<td>35.5</td>
<td>-0.31</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>8f</td>
<td>8.1 (5.1)</td>
<td>3.9 (1.0)</td>
<td>2.5</td>
<td>31.2</td>
<td>-0.43</td>
<td>0.070</td>
<td>0.070</td>
</tr>
<tr>
<td>8h</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>3</td>
<td>24.1</td>
<td>0.53</td>
<td>0.093</td>
<td>0.093</td>
</tr>
<tr>
<td>8i</td>
<td>12.2 (7.4)</td>
<td>15.8 (11.1)</td>
<td>3</td>
<td>21.6</td>
<td>0.57</td>
<td>0.091</td>
<td>0.091</td>
</tr>
</tbody>
</table>
Table S19. Relative energies (E_{rel}) and Gibbs free energies (ΔG_{298} in kcal mol$^{-1}$) in gas-phase and TFA solvent, hydrogen bonding index (N_H), ring strain (Φ_P), π-conjugation index ($I I$) and bond-length alternation (Δr_{C-C} and Δr_{C-N}) of the diprotonated meso-octakis(pentafluorophenyl)-substituted [38]octaphyrins 9.

<table>
<thead>
<tr>
<th>conformers</th>
<th>E_{rel}</th>
<th>ΔG_{298}</th>
<th>N_H</th>
<th>Φ_P</th>
<th>II</th>
<th>Δr_{C-N}</th>
<th>Δr_{C-C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>6.9 (10.0)</td>
<td>6.1 (8.2)</td>
<td>0</td>
<td>31.7</td>
<td>0.38</td>
<td>0.005</td>
<td>0.057</td>
</tr>
<tr>
<td>9b</td>
<td>4.0 (6.0)</td>
<td>1.3 (2.4)</td>
<td>0</td>
<td>31.9</td>
<td>0.40</td>
<td>0.011</td>
<td>0.066</td>
</tr>
<tr>
<td>9c</td>
<td>6.2 (12.8)</td>
<td>6.5 (12.1)</td>
<td>0</td>
<td>29.9</td>
<td>0.41</td>
<td>0.028</td>
<td>0.075</td>
</tr>
<tr>
<td>9d</td>
<td>17.0 (22.6)</td>
<td>15.6 (20.3)</td>
<td>0</td>
<td>43.0</td>
<td>0.25</td>
<td>0.025</td>
<td>0.096</td>
</tr>
<tr>
<td>9e</td>
<td>12.6 (12.1)</td>
<td>6.9 (5.6)</td>
<td>0</td>
<td>26.9</td>
<td>-0.22</td>
<td>0.028</td>
<td>0.091</td>
</tr>
<tr>
<td>9f</td>
<td>7.3 (10.5)</td>
<td>3.5 (5.7)</td>
<td>0</td>
<td>42.9</td>
<td>-0.33</td>
<td>0.038</td>
<td>0.086</td>
</tr>
<tr>
<td>9h</td>
<td>0.0 (1.0)</td>
<td>0.0 (0.0)</td>
<td>0</td>
<td>28.5</td>
<td>0.49</td>
<td>0.006</td>
<td>0.052</td>
</tr>
<tr>
<td>9i</td>
<td>1.9 (0.0)</td>
<td>5.9 (3.0)</td>
<td>0</td>
<td>35.9</td>
<td>0.45</td>
<td>0.002</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Figure S26. Dependence of the relative energy with N_H for meso-octakis(pentafluorophenyl) [36] (top) and [38]octaphyrins (bottom).
Figure S27. Dependence of the relative energy with N_H for diprotonated meso-octakis(pentafluorophenyl) [36]octaphyrin 8.

\[E_{\text{rel}} = -8.591 N_H + 33.473 \]
\[R^2 = 0.730 \]

Figure S28. Plausible conformations for meso-octakis(pentafluorophenyl) [36]octaphyrin in neutral state.

Figure S29. Experimental and computed 1H NMR shifts of the NH protons and β-protons for the neutral meso-octakis(pentafluorophenyl) [36]octaphyrin 8 in different conformations.
In contrast to unsubstituted [36]octaphyrins, the relative Gibbs free energies of the different conformations of meso-octakis(pentafluorophenyl) octaphyrins in neutral and diprotonated state are strongly dependent on the functional used to evaluate the electronic energies in solvent. Whereas M06 predicts the twisted-Hückel topologies (i and h) as the most stable ones for the neutral [36] and [38]octaphyrins, B3LYP predicts that the Möbius f and the nonsymmetric Hückel c for 6 and 7, respectively. However, a doubly-twisted topology 6i with all the pyrrolic nitrogens pointing inward was revealed by the X-ray crystallographic structure for the neutral [36]octaphyrin. In the case of neutral [38]octaphyrin, no crystallographic structure is available, but the 1H-NMR spectra of the three plausible conformations (7c, 7d and 7h) (Figure 6) indicate that the most plausible structure for the neutral meso-octakis(pentafluorophenyl) [38]octaphyrin is the figure-eight conformation 7h with two inverted pyrrole rings. Therefore, M06 provides relative energies in better agreement with the experimental data than B3LYP.
By contrast, in the diprotonated species, B3LYP provides relative energies in better agreement with the experimental observations than M06, although it describes the overall Hückel and Möbius structures worse. According to B3LYP, the Möbius 8f and the Hückel 9b are the global minima. The main difference between both functionals is related to the relative stability of the figure-eight conformations, which seems to be overstabilized by M06 in the diprotonated state, whereas B3LYP underestimates the stability of the figure-eight conformations in the neutral state. Since both M06 and B3LYP describe well the degree of π-electron delocalization in Hückel and Möbius octaphyrins, the discrepancies between the different methodologies mainly arise from an overestimation of the noncovalent interactions stabilizing the figure-eight topologies, such us the π-π staking interactions. Therefore, the selection of a functional for describing the thermochemistry of neutral and protonated meso-substituted octaphyrins is a complex task.
VIII. Aromaticity

Scheme S1. Example of the isomerization reaction used to evaluate the ISE and other aromaticity indices of [36]octaphyrin. Syn-anti correction for the ISE. ISE and Δη are given in kcal mol$^{-1}$ and Λ in ppm cgs.

Table S21. Energetic, reactivity, magnetic and structural indices of aromaticity of the different conformations of the neutral unsubstituted [36]octaphyrins computed at M06/6-311+G(d,p) level of theory.[14][a]

<table>
<thead>
<tr>
<th>conformers</th>
<th>ISE</th>
<th>ISE$_{corr}$</th>
<th>Δη</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>NICS$_{zz}(1)$</th>
<th>HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>28.0</td>
<td>4.5</td>
<td>-1.6</td>
<td>238.4</td>
<td>8.6</td>
<td>31.5</td>
<td>0.75</td>
</tr>
<tr>
<td>1b</td>
<td>18.4</td>
<td>/</td>
<td>-6.1</td>
<td>458.8</td>
<td>8.4</td>
<td>26.9</td>
<td>0.73</td>
</tr>
<tr>
<td>1c</td>
<td>8.4</td>
<td>-2.8</td>
<td>-8.4</td>
<td>295.0</td>
<td>13.2</td>
<td>22.9</td>
<td>0.76</td>
</tr>
<tr>
<td>1d</td>
<td>18.4</td>
<td>1.0</td>
<td>-2.9</td>
<td>102.5</td>
<td>6.1</td>
<td>22.6</td>
<td>0.73</td>
</tr>
<tr>
<td>1e</td>
<td>20.1</td>
<td>20.1</td>
<td>-1.0</td>
<td>-325.1</td>
<td>-6.1</td>
<td>-13.3</td>
<td>0.71</td>
</tr>
<tr>
<td>1f</td>
<td>21.3</td>
<td>2.2</td>
<td>1.6</td>
<td>-299.0</td>
<td>-13.4</td>
<td>-24.6</td>
<td>0.82</td>
</tr>
<tr>
<td>1g</td>
<td>23.2</td>
<td>-1.0</td>
<td>-5.3</td>
<td>62.8</td>
<td>3.8</td>
<td>-22.5</td>
<td>0.76</td>
</tr>
<tr>
<td>1h</td>
<td>27.3</td>
<td>0.3</td>
<td>-3.5</td>
<td>92.1</td>
<td>4.0</td>
<td>-17.3</td>
<td>0.72</td>
</tr>
<tr>
<td>1i</td>
<td>20.3</td>
<td>-13.3</td>
<td>-3.5</td>
<td>79.1</td>
<td>0.8</td>
<td>-19.3</td>
<td>0.76</td>
</tr>
</tbody>
</table>

[a] ISE and ISE$_{corr}$ are given in kcal mol$^{-1}$, Λ in ppm cgs and NICS indices in ppm.

Table S22. Energetic, reactivity, magnetic and structural indices of aromaticity of the different conformations of the neutral unsubstituted [34]octaphyrins computed at B3LYP/6-311+G(d,p) level of theory.[15]

<table>
<thead>
<tr>
<th>conformers</th>
<th>ISE</th>
<th>ISE$_{corr}$</th>
<th>Δη</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>NICS$_{zz}(1)$</th>
<th>HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>27.4</td>
<td>-2.8</td>
<td>4.1</td>
<td>-444.9</td>
<td>-15.2</td>
<td>-34.2</td>
<td>0.81</td>
</tr>
<tr>
<td>2b</td>
<td>20.8</td>
<td>1.0</td>
<td>-0.1</td>
<td>-513.7</td>
<td>-6.5</td>
<td>-15.5</td>
<td>0.73</td>
</tr>
<tr>
<td>2c</td>
<td>23.4</td>
<td>-2.0</td>
<td>0.0</td>
<td>272.5</td>
<td>-12.7</td>
<td>-19.9</td>
<td>0.82</td>
</tr>
<tr>
<td>2d</td>
<td>16.1</td>
<td>-1.3</td>
<td>0.5</td>
<td>-192.0</td>
<td>-21.6</td>
<td>-29.1</td>
<td>0.79</td>
</tr>
<tr>
<td>2e</td>
<td>17.4</td>
<td>-0.4</td>
<td>-5.1</td>
<td>348.6</td>
<td>5.4</td>
<td>19.6</td>
<td>0.71</td>
</tr>
<tr>
<td>2f</td>
<td>15.1</td>
<td>-4.7</td>
<td>-6.2</td>
<td>347.0</td>
<td>10.8</td>
<td>33.5</td>
<td>0.78</td>
</tr>
<tr>
<td>2g</td>
<td>26.1</td>
<td>-13.3</td>
<td>-1.1[b]</td>
<td>-127.8</td>
<td>-12.7</td>
<td>-20.9</td>
<td>0.86</td>
</tr>
<tr>
<td>2h</td>
<td>25.7</td>
<td>-12.6</td>
<td>3.6</td>
<td>-126.9</td>
<td>-12.7</td>
<td>-20.9</td>
<td>0.84</td>
</tr>
<tr>
<td>2i</td>
<td>23.8</td>
<td>11.7</td>
<td>-1.2[c]</td>
<td>-30.1</td>
<td>-3.2</td>
<td>-9.3</td>
<td>0.85</td>
</tr>
</tbody>
</table>

[a] ISE and ISE$_{corr}$ are given in kcal mol$^{-1}$, Λ in ppm cgs and NICS indices in ppm.

[b] The large flexibility induces topology changes in the dihydrogen derivative of the methylene adducts of these conformations during the optimization.
Figure S31. Correlation between the relative hardness ($\Delta \eta$) (top) and the diamagnetic susceptibility exaltation (Λ in ppm cgs) (bottom) computed with B3LYP and M06.
Figure S32. Correlation between the NICS(0) and ISE computed with B3LYP and M06 functionals.

Table S23. Energetic, reactivity, magnetic and structural indices of aromaticity of the different conformation of the neutral unsubstituted [38]octaphyrins computed at the B3LYP/6-311+G(d,p) level of theory.

<table>
<thead>
<tr>
<th>conformers</th>
<th>ISE</th>
<th>ISE_corr</th>
<th>Δη</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>NICSZZ (1)</th>
<th>HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>29.3</td>
<td>-13.5</td>
<td>1.1</td>
<td>-491.7</td>
<td>-18.2</td>
<td>-37.3</td>
<td>0.84</td>
</tr>
<tr>
<td>3b</td>
<td>24.2</td>
<td>-12.3</td>
<td>3.7</td>
<td>-791.2</td>
<td>-9.5</td>
<td>-24.4</td>
<td>0.70</td>
</tr>
<tr>
<td>3c</td>
<td>33.9</td>
<td>-9.8</td>
<td>9.1</td>
<td>-158.7</td>
<td>-8.6</td>
<td>-9.0</td>
<td>0.82</td>
</tr>
<tr>
<td>3d</td>
<td>26.6</td>
<td>-</td>
<td>5.0</td>
<td>-215.3</td>
<td>-18.2</td>
<td>-25.7</td>
<td>0.83</td>
</tr>
<tr>
<td>3e</td>
<td>28.5</td>
<td>-9.4</td>
<td>4.9</td>
<td>307.1</td>
<td>5.0</td>
<td>18.3</td>
<td>0.73</td>
</tr>
<tr>
<td>3f</td>
<td>20.8</td>
<td>-6.2</td>
<td>-3.4</td>
<td>325.4</td>
<td>10.4</td>
<td>34.5</td>
<td>0.83</td>
</tr>
<tr>
<td>3g</td>
<td>29.1</td>
<td>-10.3</td>
<td>7.3</td>
<td>-136.3</td>
<td>-14.1</td>
<td>-19.1</td>
<td>0.81</td>
</tr>
<tr>
<td>3h</td>
<td>31.9</td>
<td>-12.1</td>
<td>4.9</td>
<td>-158.2</td>
<td>-15.8</td>
<td>-41.2</td>
<td>0.87</td>
</tr>
<tr>
<td>3i</td>
<td>27.9</td>
<td>-9.0</td>
<td>7.9</td>
<td>-107.2</td>
<td>-14.5</td>
<td>-44.1</td>
<td>0.88</td>
</tr>
</tbody>
</table>

[a] ISE and ISE_corr are given in kcal mol⁻¹, Λ in ppm cgs and NICS indices in ppm.
[b] The large flexibility induces topology changes in the dihydrogen derivative of the methylene adducts of these conformations during the optimization.
Table S24. Energetic, reactivity, magnetic and structural indices of aromaticity of the different conformations of the diprotonated unsubstituted [36]octaphyrins computed at the B3LYP/6-311+G(d,p) level of theory.[a]

<table>
<thead>
<tr>
<th>conformers</th>
<th>ISE</th>
<th>ISE\textsubscript{corr}</th>
<th>(\Delta \eta)</th>
<th>(\Lambda)</th>
<th>NICS(0)</th>
<th>NICS\textsubscript{zz}(1)</th>
<th>HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>22.1</td>
<td>-13.5</td>
<td>-7.3</td>
<td>880.7</td>
<td>28.4</td>
<td>81.7</td>
<td>0.69</td>
</tr>
<tr>
<td>4b</td>
<td>26.1</td>
<td>2.9[b]</td>
<td>-3.0</td>
<td>1199.1</td>
<td>16.1</td>
<td>49.3</td>
<td>0.76</td>
</tr>
<tr>
<td>4c</td>
<td>16.1</td>
<td>-15.5</td>
<td>-9.2</td>
<td>478.5</td>
<td>5.1</td>
<td>37.1</td>
<td>0.80</td>
</tr>
<tr>
<td>4d</td>
<td>21.9</td>
<td>-16.1</td>
<td>-9.8</td>
<td>469.6</td>
<td>9.7</td>
<td>37.5</td>
<td>0.81</td>
</tr>
<tr>
<td>4e</td>
<td>26.2</td>
<td>0.95</td>
<td>10.8</td>
<td>-558.8</td>
<td>-10.4</td>
<td>-26.0</td>
<td>0.80</td>
</tr>
<tr>
<td>4f</td>
<td>20.7</td>
<td>3.2</td>
<td>5.1</td>
<td>-361.1</td>
<td>-15.3</td>
<td>-30.9</td>
<td>0.71</td>
</tr>
<tr>
<td>4g</td>
<td>19.7</td>
<td>-1.7</td>
<td>-8.5</td>
<td>365.8</td>
<td>12.5</td>
<td>-17.9</td>
<td>0.79</td>
</tr>
<tr>
<td>4h</td>
<td>20.9</td>
<td>-1.5</td>
<td>-8.0</td>
<td>378.6</td>
<td>18.6</td>
<td>-17.1</td>
<td>0.78</td>
</tr>
<tr>
<td>4i</td>
<td>25.1</td>
<td>0.3[b]</td>
<td>-3.4</td>
<td>70.0</td>
<td>1.2</td>
<td>-25.6</td>
<td>0.77</td>
</tr>
</tbody>
</table>

\[a\] ISE and ISE\textsubscript{corr} are given in kcal mol-1, \(\Lambda\) in ppm cgs and NICS indices in ppm.

\[b\] The large flexibility induces topology changes in the dihydrogen derivative of the methylene adducts of these conformations during the optimization.

Table S25. Energetic, reactivity, magnetic and structural indices of aromaticity of the different conformations of the diprotonated unsubstituted [38]octaphyrins computed at B3LYP/6-311+G(d,p) level of theory.[a]

<table>
<thead>
<tr>
<th>conformers</th>
<th>ISE</th>
<th>ISE\textsubscript{corr}</th>
<th>(\Delta \eta)</th>
<th>(\Lambda)</th>
<th>NICS(0)</th>
<th>NICS\textsubscript{zz}(1)</th>
<th>HOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>27.7</td>
<td>-13.0</td>
<td>7.7</td>
<td>-638</td>
<td>-17.8</td>
<td>-39.2</td>
<td>0.88</td>
</tr>
<tr>
<td>5b</td>
<td>25.5</td>
<td>-7.1</td>
<td>9.6</td>
<td>-1081</td>
<td>-12.1</td>
<td>-32.5</td>
<td>0.84</td>
</tr>
<tr>
<td>5c</td>
<td>22.1</td>
<td>-9.6</td>
<td>6.7</td>
<td>-277.8</td>
<td>-18.5</td>
<td>-28.0</td>
<td>0.86</td>
</tr>
<tr>
<td>5d</td>
<td>27.4</td>
<td>-8.9</td>
<td>10.1</td>
<td>[c]</td>
<td>-7.4</td>
<td>-15.7</td>
<td>0.83</td>
</tr>
<tr>
<td>5e</td>
<td>29.3</td>
<td>-14.2</td>
<td>-2.6</td>
<td>707.0</td>
<td>12.8</td>
<td>40.5</td>
<td>0.76</td>
</tr>
<tr>
<td>5f</td>
<td>15.3</td>
<td>-15.6</td>
<td>-2.7</td>
<td>462.1</td>
<td>20.8</td>
<td>59.2</td>
<td>0.76</td>
</tr>
<tr>
<td>5g</td>
<td>23.8</td>
<td>0.0</td>
<td>8.1</td>
<td>-217.6</td>
<td>-16.9</td>
<td>-21.7</td>
<td>0.88</td>
</tr>
<tr>
<td>5h</td>
<td>27.8</td>
<td>-2.4</td>
<td>8.3</td>
<td>-283.0</td>
<td>-18.0</td>
<td>-21.1</td>
<td>0.87</td>
</tr>
<tr>
<td>5i</td>
<td>27.6</td>
<td>-13.0</td>
<td>10.3</td>
<td>-183.2</td>
<td>-14.4</td>
<td>-33.5</td>
<td>0.88</td>
</tr>
</tbody>
</table>

\[a\] ISE and ISE\textsubscript{corr} are given in kcal mol-1, \(\Lambda\) in ppm cgs and NICS indices in ppm.

\[b\] The large flexibility induces topology changes in the dihydrogen derivative of the methylene adducts of these conformations during the optimization.

\[c\] Due to computational issues, the magnetic susceptibility exaltation of \(T_{B,F,20}^{\text{[36]}}\) is not reported.

\[
\begin{align*}
\Lambda &= 347.0 \\
\Delta \eta &= -3.4
\end{align*}
\]

\[
\begin{align*}
\Lambda &= 344.4 \\
\Delta \eta &= 3.8
\end{align*}
\]

\[
\begin{align*}
\Lambda &= 325.4 \\
\Delta \eta &= -3.4
\end{align*}
\]

Figure S33. Evolution of magnetic and reactivity descriptors of the Möbius topology \(T_{1B,C,F}^{\text{[36]}}\) (f) with the number of \(\pi\)-electrons.
Table S26. Correlation between several descriptors of aromaticity for unsubstituted octaphyrins (n=25).\[a\]

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \eta$</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>NICS(1)</th>
<th>HOMA</th>
<th>NICS$_{zz}$(1)</th>
<th>ISE$_{corr}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>0.75</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS(0)</td>
<td>0.83</td>
<td>0.92</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>0.50</td>
<td>0.44</td>
<td>0.54</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS(1)$_{zz}$</td>
<td>0.89$^{[b]}$</td>
<td>0.94$^{[b]}$</td>
<td>0.96$^{[b]}$</td>
<td>1</td>
<td>0.49$^{[b]}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ISE$_{corr}$</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

[a] Conformations with highly distorted methylene and methyl isomers in the isomerization reaction were not taken into account in this statistical analysis.

[b] The figure-eight topologies were left out because their NICS$_{zz}$(1) are not associated with the macrocyclic ring current.

Figure S34. Correlation between several aromaticity descriptors computed for neutral and diprotonated octaphyrins (n = 25).

Table S27. Energetic, reactivity, magnetic and structural indices of aromaticity of the most stable conformation of meso-octakis(pentafluorophenyl) [36] and [38]octaphyrins upon protonation.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \eta$</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>NICS(1)$_{zz}$</th>
<th>HOMA</th>
<th>G$_{T2}^{[A]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[36]</td>
<td>$T_2^{C,G}$</td>
<td>-1.2</td>
<td>-30</td>
<td>-3.2</td>
<td>-9.3</td>
<td>0.85</td>
</tr>
<tr>
<td>[38]</td>
<td>$T_2^{C,G}$</td>
<td>4.9</td>
<td>-158</td>
<td>-15.8</td>
<td>-41.2</td>
<td>0.87</td>
</tr>
<tr>
<td>[36]$^{[2]}$</td>
<td>$T_1^{B,C,E,F,H}$</td>
<td>-559.00</td>
<td>-10.40</td>
<td>-26.00</td>
<td>0.80</td>
<td>5100</td>
</tr>
<tr>
<td>[38]$^{[2]}$</td>
<td>$T_0^{B,C,E,F,H}$</td>
<td>9.60</td>
<td>-1081.00</td>
<td>-12.10</td>
<td>-32.10</td>
<td>0.84</td>
</tr>
</tbody>
</table>

[a] $\Delta \eta$ is given in kcal mol$^{-1}$, Λ in ppm cgs and NICS indices in ppm. [b] Two-photon absorption cross-section in GM measured experimentally (J. Am. Chem. Soc. 2010, 132, 3105).
Figure S35. Correlation between the two-photon absorption cross-section values (σ_{TPA} in GM) and relative hardness and exaltation for meso-octakis(pentafluorophenyl) [36] and [38]octaphyrins in neutral and diprotonated states.

Table S28. Correlation between several descriptors of aromaticity for neutral unsubstituted octaphyrins ($n = 14$).

<table>
<thead>
<tr>
<th>$\Delta \eta$</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>HOMA</th>
<th>NICS$_{zz}$(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>0.77</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS(0)</td>
<td>0.90</td>
<td>0.77</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>0.78</td>
<td>0.73</td>
<td>0.80</td>
<td>1</td>
</tr>
<tr>
<td>NICS$_{zz}$(1)</td>
<td>0.89$^[b]$</td>
<td>0.91$^[b]$</td>
<td>0.96$^[b]$</td>
<td>0.73$^[b]$</td>
</tr>
</tbody>
</table>

[a] Conformations with highly distorted methylene and methyl isomers in the isomerization reaction were not taken into account in this statistical analysis.

[b] The figure-eight topologies were left out because their NICS$_{zz}$(1) are not associated with the macrocyclic ring current.

Table S29. Correlation between several descriptors of aromaticity for diprotonated unsubstituted octaphyrins ($n = 11$)$^[i]$.

<table>
<thead>
<tr>
<th>$\Delta \eta$</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>HOMA</th>
<th>NICS$_{zz}$(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>0.77</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS(0)</td>
<td>0.82</td>
<td>0.91</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>0.37</td>
<td>0.42</td>
<td>0.48</td>
<td>1</td>
</tr>
<tr>
<td>NICS$_{zz}$(1)</td>
<td>0.80$^[b]$</td>
<td>0.96$^[b]$</td>
<td>0.98$^[b]$</td>
<td>0.38$^[b]$</td>
</tr>
</tbody>
</table>

[a] Conformations with highly distorted methylene and methyl isomers in the isomerization reaction were not taken into account in this statistical analysis.

[b] The figure-eight topologies were left out because their NICS$_{zz}$(1) are not associated with the macrocyclic ring current.

Table S30. Correlation between several descriptors of aromaticity for unsubstituted [4n + 2] π-electrons octaphyrins ($n = 13$)$^[i]$.

<table>
<thead>
<tr>
<th>$\Delta \eta$</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>HOMA</th>
<th>NICS$_{zz}$(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>0.67</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS(0)</td>
<td>0.78</td>
<td>0.92</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>0.82</td>
<td>0.65</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>NICS$_{zz}$(1)</td>
<td>0.78$^[b]$</td>
<td>0.72$^[b]$</td>
<td>0.93$^[b]$</td>
<td>0.73$^[b]$</td>
</tr>
</tbody>
</table>

[a] Conformations with highly distorted methylene and methyl isomers in the isomerization reaction were not taken into account in this statistical analysis.

[b] The figure-eight topologies were left out because their NICS$_{zz}$(1) are not associated with the macrocyclic ring current.
Table S31. Correlation between several descriptors of aromaticity for unsubstituted [4n] π-electrons octaphyrins (n = 12).[a]

<table>
<thead>
<tr>
<th></th>
<th>Δη</th>
<th>Λ</th>
<th>NICS(0)</th>
<th>HOMA</th>
<th>NICS_{zz}(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δη</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>0.70</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS(0)</td>
<td>0.73</td>
<td>0.92</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>0.19</td>
<td>0.10</td>
<td>0.14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NICS_{zz}(1)</td>
<td>0.92[b]</td>
<td>0.91[b]</td>
<td>0.87[b]</td>
<td>0.53[b]</td>
<td>1</td>
</tr>
</tbody>
</table>

[a] Conformations with highly distorted methylene and methyl isomers in the isomerization reaction were not taken into account in this statistical analysis.

[b] The figure-eight topologies were left out because their NICS_{zz}(1) are not associated with the macrocyclic ring current.
VII Cartesian coordinates of M06/6-31G(d,p) optimized geometries

1a (Hückel $\pi^5\sigma^{10}\delta^{25}\delta^{30}$)

<table>
<thead>
<tr>
<th></th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-7.63494</td>
<td>1.1164</td>
<td>-0.04268</td>
</tr>
<tr>
<td>C</td>
<td>-8.980487</td>
<td>0.69264</td>
<td>-0.03154</td>
</tr>
<tr>
<td>C</td>
<td>-8.98051</td>
<td>-0.69246</td>
<td>0.03154</td>
</tr>
<tr>
<td>C</td>
<td>-7.634991</td>
<td>-1.11628</td>
<td>0.04267</td>
</tr>
<tr>
<td>C</td>
<td>-7.113451</td>
<td>-2.43187</td>
<td>0.08176</td>
</tr>
<tr>
<td>C</td>
<td>-5.782441</td>
<td>-2.75921</td>
<td>0.00479</td>
</tr>
<tr>
<td>N</td>
<td>-4.781611</td>
<td>-1.82209</td>
<td>-0.15718</td>
</tr>
<tr>
<td>C</td>
<td>-3.645291</td>
<td>-2.50485</td>
<td>-0.19002</td>
</tr>
<tr>
<td>C</td>
<td>-2.412671</td>
<td>-1.81063</td>
<td>-0.39971</td>
</tr>
<tr>
<td>C</td>
<td>-1.148821</td>
<td>-2.27564</td>
<td>-0.17984</td>
</tr>
<tr>
<td>C</td>
<td>-0.676551</td>
<td>-3.50488</td>
<td>0.41949</td>
</tr>
<tr>
<td>C</td>
<td>0.676661</td>
<td>-3.50485</td>
<td>0.41943</td>
</tr>
<tr>
<td>C</td>
<td>1.148771</td>
<td>-2.27558</td>
<td>-0.17988</td>
</tr>
<tr>
<td>C</td>
<td>2.412671</td>
<td>-1.81052</td>
<td>-0.39975</td>
</tr>
<tr>
<td>C</td>
<td>3.645211</td>
<td>-2.50475</td>
<td>-0.19004</td>
</tr>
<tr>
<td>N</td>
<td>4.781561</td>
<td>-1.82205</td>
<td>-0.15726</td>
</tr>
<tr>
<td>C</td>
<td>5.782331</td>
<td>-2.75923</td>
<td>0.00473</td>
</tr>
<tr>
<td>C</td>
<td>7.113351</td>
<td>-2.43198</td>
<td>0.08173</td>
</tr>
<tr>
<td>C</td>
<td>7.634941</td>
<td>-1.11641</td>
<td>0.04267</td>
</tr>
<tr>
<td>C</td>
<td>8.980481</td>
<td>-0.69265</td>
<td>0.03153</td>
</tr>
<tr>
<td>C</td>
<td>8.98051</td>
<td>0.69245</td>
<td>-0.03156</td>
</tr>
<tr>
<td>C</td>
<td>7.634991</td>
<td>1.11627</td>
<td>-0.04268</td>
</tr>
<tr>
<td>C</td>
<td>7.113451</td>
<td>2.43187</td>
<td>-0.08177</td>
</tr>
<tr>
<td>C</td>
<td>5.782451</td>
<td>2.7592</td>
<td>-0.00481</td>
</tr>
<tr>
<td>N</td>
<td>4.781611</td>
<td>1.82208</td>
<td>0.15716</td>
</tr>
<tr>
<td>C</td>
<td>3.645291</td>
<td>2.50485</td>
<td>0.19001</td>
</tr>
<tr>
<td>C</td>
<td>2.412671</td>
<td>1.81062</td>
<td>0.3997</td>
</tr>
<tr>
<td>C</td>
<td>1.148821</td>
<td>2.27565</td>
<td>0.17985</td>
</tr>
<tr>
<td>C</td>
<td>0.67666</td>
<td>3.5049</td>
<td>-0.41945</td>
</tr>
<tr>
<td>C</td>
<td>-0.676651</td>
<td>3.50488</td>
<td>-0.41939</td>
</tr>
<tr>
<td>C</td>
<td>-1.148771</td>
<td>2.27559</td>
<td>0.17989</td>
</tr>
<tr>
<td>C</td>
<td>-2.412671</td>
<td>1.81052</td>
<td>0.39975</td>
</tr>
<tr>
<td>C</td>
<td>-3.645211</td>
<td>2.50476</td>
<td>0.19005</td>
</tr>
<tr>
<td>N</td>
<td>-4.781561</td>
<td>1.82204</td>
<td>0.15726</td>
</tr>
<tr>
<td>C</td>
<td>-5.782331</td>
<td>2.75923</td>
<td>-0.00473</td>
</tr>
<tr>
<td>C</td>
<td>-7.113351</td>
<td>2.43197</td>
<td>-0.08173</td>
</tr>
<tr>
<td>N</td>
<td>-6.8545</td>
<td>0.00005</td>
<td>-0.00001</td>
</tr>
<tr>
<td>C</td>
<td>-5.219371</td>
<td>-4.09369</td>
<td>0.06029</td>
</tr>
<tr>
<td>C</td>
<td>-3.877771</td>
<td>-3.94148</td>
<td>-0.05681</td>
</tr>
<tr>
<td>N</td>
<td>-0.00051</td>
<td>-1.55154</td>
<td>-0.47289</td>
</tr>
<tr>
<td>C</td>
<td>3.877581</td>
<td>-3.94137</td>
<td>-0.05658</td>
</tr>
<tr>
<td>C</td>
<td>5.219171</td>
<td>-4.09368</td>
<td>0.06036</td>
</tr>
<tr>
<td>N</td>
<td>6.8545</td>
<td>-0.00006</td>
<td>-0.00001</td>
</tr>
<tr>
<td>C</td>
<td>5.219381</td>
<td>4.09368</td>
<td>-0.0603</td>
</tr>
<tr>
<td>C</td>
<td>3.877791</td>
<td>3.94147</td>
<td>0.05681</td>
</tr>
<tr>
<td>N</td>
<td>0.00005</td>
<td>1.55155</td>
<td>0.4729</td>
</tr>
<tr>
<td>C</td>
<td>-3.877591</td>
<td>3.94137</td>
<td>0.0566</td>
</tr>
<tr>
<td>C</td>
<td>-5.219181</td>
<td>4.09367</td>
<td>-0.06034</td>
</tr>
<tr>
<td>H</td>
<td>-5.827221</td>
<td>-0.00001</td>
<td>-0.00009</td>
</tr>
<tr>
<td>H</td>
<td>5.827221</td>
<td>0.00008</td>
<td>0.00008</td>
</tr>
<tr>
<td>H</td>
<td>0.00080</td>
<td>0.70863</td>
<td>1.03104</td>
</tr>
<tr>
<td>H</td>
<td>-0.00080</td>
<td>-0.70867</td>
<td>-1.0311</td>
</tr>
<tr>
<td>H</td>
<td>7.838721</td>
<td>-3.23873</td>
<td>0.17635</td>
</tr>
</tbody>
</table>
\[E(RM06) = -1977.64678429 \quad \text{A.U. after 14 cycles} \]

1b (Hückel T0B,C,E,F,H)

C	0.14091	-5.38931	3.56325																			
C	0.2508	-5.94639	4.89117																			
C	0.3072	-4.93332	5.78731																			
C	0.22472	-3.67658	5.07989																			
C	0.19376	-2.42845	5.63357																			
C	0.14825	-1.17956	4.94163																			
N	-0.12892	-0.04714	5.57391																			
C	-0.13703	0.92897	4.59452																			
C	-0.39492	2.24894	4.86019																			
C	-0.64369	3.20324	3.83249																			
C	-1.21501	2.99782	2.57018																			
C	-1.18488	4.20101	1.87787																			
C	-0.59841	5.16502	2.7077																			
C	-0.26212	6.52142	2.42883																			
C	-0.08106	6.99301	1.15257																			
N	-0.11995	6.15779	0.05907																			
C	0.1355	6.90879	-0.99758																			
C	0.25471	6.37078	-2.32157																			
C	0.32886	5.02751	-2.5807																			
C	0.40876	3.92513	-1.64168																			
C	0.468	2.76888	-2.33286																			
C	0.42647	3.05747	-3.75171																			
C	0.37202	2.19299	-4.80582																			
C	0.47549	0.76597	-4.68237																			
N	-0.0747	-0.05232	-5.56359																			
C	0.15358	-1.32949	-5.07593																			
C	-0.36864	-2.43437	-5.69378																			
C	-0.43226	-3.7487	-5.15739																			
C	-0.6559	-4.96568	-5.81206																			
C	-0.6687	-5.97322	-4.85063																			
C	-0.46958	-5.38258	-3.59502																			
C	-0.46072	-6.02237	-2.3309																			
C	-0.15703	-5.51476	-1.0931																			
N	-0.30697	-6.3108	0.02954																			
C	0.04238	-5.55807	1.06073																			
C	0.03384	-6.08106	2.3917																			
N	0.16897	-4.00815	3.72896																			
C	0.40229	-0.96004	3.51483																			
C	0.21409	0.35913	3.29916																			
N	-0.34363	4.54548	3.91641																			
C	0.20309	8.35625	0.72908																			
C	0.31831	8.31176	-0.62112																			
N	0.36163	4.44225	-3.83623																			
C	1.18153	0.03513	-3.62565																			
C	0.96968	-1.27683	-3.86997																			
N	-0.30619	-4.0343	-3.81567																			
C	0.34661	-4.20236	-0.7146																			
C	0.47278	-4.22493	0.63264																			
H	0.28783	9.21866	1.38085																			
H	-1.5551	4.41162	0.8854																			
H	-1.65982	2.06579	2.24762																			
H	0.37726	0.91505	2.38439																			
H	0.78114	-1.68458	2.80321																			
H	0.41497	-5.00364	6.86293																			
H	0.30546	-7.01035	5.08742																			
H	0.89784	-3.44845	1.2594																			
H	0.20421	4.95451	4.65954																			
H	-0.24481	-3.38833	3.04869																			
H	0.5377	9.12821	-1.3007																			
H	0.40065	4.07608	-0.57189																			
H	0.4878	1.77157	-1.91666																			
H	1.82403	0.46665	-2.86753																			
H	1.41857	-2.12181	-3.3592																			
H	-0.76419	-5.07567	-6.88354																			
H	-0.79548	-7.03644	-5.01178																			
H	0.63935	-3.38916	-1.37022																			
H	0.28997	4.95059	-4.70369																			
H	-0.37978	-3.32952	-3.09677																			
H	-0.7466	-7.07338	-2.34018																			
H	-0.08309	-7.15995	2.46753																			
H	0.15776	-2.37128	6.71918																			
H	-0.42351	2.5573	5.90579																			
H	-0.10588	7.20307	3.26559																			
H	0.28909	7.07224	-3.15461																			
H	-0.81404	-2.28334	-6.67589																			
H	0.16107	2.57546	-5.80368																			

SCF Done: \(E(RM06) = -1977.59152008 \) A.U. after 7 cycles

1c (Hückel \(T0^{5,20,25,B,\ell} \))

C	6.07536	2.20847	0.07551																			
C	6.25664	3.56169	0.54861																			
C	5.03514	4.09412	0.78356																			
C	4.02542	3.09827	0.49497																			
C	2.67537	3.29546	0.57728																			
C 1.6373 2.33841 0.37365																						
N 0.36084 2.70782 0.31026																						
C -0.33636 1.52776 0.15426																						
C -1.68578 1.37769 -0.00152																						
C -2.72136 2.34237 -0.08578																						
C -2.79317 3.74683 0.00053																						
C -4.11573 4.11162 -0.2316																						
C -4.86487 2.93484 -0.45628																						
C -6.21621 2.72582 -0.83584																						
C -6.77577 1.47787 -1.03453																						
N -6.08898 0.32294 -0.73318																						
C -6.77766 -0.69455 -1.25643																						
C -6.26201 -2.0275 -1.21898																						
C -5.15869 -2.36261 -0.46798																						
C -4.28883 -3.51956 -0.52867																						
C -3.22914 -3.13136 0.29698																						
C -3.42915 -2.05554 0.98523																						
C -2.74078 -1.42674 1.98628																						
C -1.407 -1.65967 2.43546																						
N -0.46226 -2.29245 1.74825																						
C 0.7036 -2.04249 2.45285																						
C 1.96834 -2.17291 1.94865																						
C 2.3374 -2.64622 0.66127																						
C 1.6939 -3.49801 -0.2509																						
C 2.53728 -3.657 -1.34585																						
C 3.6773 -2.8656 -1.13104																						
C 4.81474 -2.65177 -1.9456																						
C 5.749 -1.66008 -1.77826																						
N 5.62499 -0.59057 -0.8997																						
C 6.76435 0.0982 -1.0275																						
C 7.02804 1.36215 -0.42579																						
N 4.72122 1.96039 0.11469																						
C 1.80333 0.88797 0.26859																						
C 0.55976 0.38158 0.14153																						
N -3.98478 1.89505 -0.33938																						
C -8.00275 1.13919 -1.72387																						
C -7.99112 -0.21279 -1.89081																						
N -4.60639 -1.54354 0.48654																						
C -0.89562 -1.03937 3.65401																						
C 0.42803 -1.30316 3.67457																						
N 3.53579 -2.28537 0.10089																						
C 7.02083 -1.60626 -2.46661																						
C 7.67829 -0.53369 -1.96493																						
H 4.20364 -1.5942 0.43499																						
H 4.35292 1.1245 -0.32861																						
H -4.29206 0.94407 -0.54587																						
H -4.99731 -0.6229 0.6616																						
H 7.3605 -2.32273 -3.2062																						
H 8.66326 -0.16225 -2.22454																						
H 2.36166 -4.25855 -2.22909																						
H 0.72096 -3.93765 -0.07811																						
H 7.22409 4.03514 0.6626																						
H 4.79934 5.09164 1.13437																						
H -1.94103 4.38251 0.20194																						
H -4.5216 5.11587 -0.24626																						
H -8.74466 1.84618 -2.07782																						
H -8.73172 -0.82779 -2.38928																						
C	-2.37596	-3.95543	0.47448																			
H	-4.46221	-4.37253	-1.17372																			
H	2.72693	0.32563	0.33955																			
H	0.24469	-0.65619	0.07422																			
H	4.96444	-3.35433	-2.7642																			
H	8.0457	1.74259	-0.47863																			
H	2.34596	4.30403	0.81844																			
H	2.77606	-1.76217	2.55697																			
H	1.17215	-0.99326	4.39962																			
H	-1.48617	-0.46925	4.3624																			
H	-6.69596	-2.78179	-1.87004																			
H	-3.24592	-0.58083	2.45698																			
H	-6.81226	3.60959	-1.05592																			
H	-2.02293	0.34222	-0.09852																			

SCF Done: $E_{(RM06)} = -1977.63975611$ A.U. after 7 cycles

1d (Hückel $T_0^{20,25,8,5}$)

C	5.75709	1.86238	-1.01897
C	6.03336	3.20908	-0.72798
C	4.9008	3.75374	-0.14944
C	3.8973	2.76348	-0.11742
C	2.57676	3.01703	0.32199
C	1.36328	2.37404	0.22806
N	0.26313	3.09387	0.65935
C	-0.80569	2.39193	0.30472
C	-2.06738	3.0519	0.457
C	-3.32883	2.86956	-0.04407
C	-4.28354	3.95674	-0.09925
C	-5.34586	3.57469	-0.84301
C	-5.16372	2.19575	-1.21963
C	-6.03578	1.42987	-1.95183
C	-5.94293	0.02016	-2.10622
N	-5.12993	-0.71587	-1.3494
C	-5.3485	-2.03161	-1.71352
C	-4.78479	-3.08839	-1.03299
C	-4.02313	-2.93651	0.15046
C	-3.14311	-3.80793	0.81615
C	-2.51392	-3.08505	1.82656
C	-3.04154	-1.783	1.80947
C	-2.7443	-0.59859	2.55769
C	-1.48052	-0.2352	2.9159
N	-0.37714	-0.9686	2.52135
C	0.65545	-0.17083	2.71697
C	1.95854	-0.45154	2.19802
C	2.28484	-1.59332	1.51641
C	1.57423	-2.84626	1.35929
C	2.3141	-3.65824	0.56308
C	3.48419	-2.93191	0.13098
C	4.43976	-3.27586	-0.79836
C	5.38251	-2.34081	-1.29526
N	5.30867	-1.03095	-1.02274
C	6.3905	-0.4504	-1.63922
C	6.62512	0.90283	-1.58907
N	4.45433	1.62261	-0.63978
C	0.92891	1.11733	-0.36947
C	-0.42866	1.12506	-0.31949
SCF Done: \(E(RM06) = -1977.63063906 \text{ A.U.} \) after 8 cycles

1e (Hückel \(T_1^{B,C,E,H} \))

<table>
<thead>
<tr>
<th>C</th>
<th>7.06231700</th>
<th>0.39754900</th>
<th>0.23117300</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.32205900</td>
<td>-0.29277600</td>
<td>0.36582100</td>
</tr>
<tr>
<td>C</td>
<td>8.14818900</td>
<td>-1.58975900</td>
<td>0.00634700</td>
</tr>
<tr>
<td>C</td>
<td>6.76873900</td>
<td>-1.78799100</td>
<td>-0.36574900</td>
</tr>
<tr>
<td>C</td>
<td>6.11002400</td>
<td>-2.96593900</td>
<td>-0.59546000</td>
</tr>
<tr>
<td>C</td>
<td>4.52168500</td>
<td>1.98067600</td>
<td>-0.64084400</td>
</tr>
<tr>
<td>C</td>
<td>4.71170600</td>
<td>-3.06068800</td>
<td>-0.86911400</td>
</tr>
<tr>
<td>N</td>
<td>3.97969600</td>
<td>-4.10465900</td>
<td>-0.49705500</td>
</tr>
<tr>
<td>C</td>
<td>2.67649700</td>
<td>-3.75760400</td>
<td>-0.78916000</td>
</tr>
<tr>
<td>C</td>
<td>1.62757800</td>
<td>-4.53540500</td>
<td>-0.35233200</td>
</tr>
<tr>
<td>C</td>
<td>0.26773200</td>
<td>-4.15779400</td>
<td>-0.29382300</td>
</tr>
<tr>
<td>C</td>
<td>-0.35858600</td>
<td>-2.90245600</td>
<td>-0.44443200</td>
</tr>
<tr>
<td>C</td>
<td>-1.71036100</td>
<td>-3.05436600</td>
<td>-0.21206400</td>
</tr>
<tr>
<td>C</td>
<td>-1.95270000</td>
<td>-4.40656800</td>
<td>0.10535100</td>
</tr>
<tr>
<td>C</td>
<td>-3.15352000</td>
<td>-5.07176900</td>
<td>0.43367400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H</td>
<td>9.23379600</td>
<td>0.18304300</td>
<td>0.70601500</td>
</tr>
<tr>
<td>C</td>
<td>2.46935200</td>
<td>2.67017400</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.27623800</td>
<td>4.76223700</td>
<td>1.41016400</td>
</tr>
<tr>
<td>N</td>
<td>4.85473400</td>
<td>5.90274000</td>
<td>2.64716500</td>
</tr>
<tr>
<td>C</td>
<td>0.12994700</td>
<td>3.90182600</td>
<td>0.27259400</td>
</tr>
<tr>
<td>C</td>
<td>1.26241300</td>
<td>4.04321600</td>
<td>1.45576700</td>
</tr>
<tr>
<td>C</td>
<td>2.61679800</td>
<td>3.77124000</td>
<td>1.77887700</td>
</tr>
<tr>
<td>C</td>
<td>3.57747400</td>
<td>3.24884500</td>
<td>0.94853700</td>
</tr>
<tr>
<td>N</td>
<td>5.41244200</td>
<td>2.21635700</td>
<td>0.49627800</td>
</tr>
<tr>
<td>C</td>
<td>6.72076600</td>
<td>1.65138300</td>
<td>0.65369200</td>
</tr>
<tr>
<td>N</td>
<td>6.17942000</td>
<td>-0.53195300</td>
<td>-0.30539500</td>
</tr>
<tr>
<td>C</td>
<td>3.90196100</td>
<td>-2.03358000</td>
<td>-1.52677000</td>
</tr>
<tr>
<td>C</td>
<td>2.62635300</td>
<td>-2.48012500</td>
<td>-1.48340700</td>
</tr>
<tr>
<td>N</td>
<td>-0.73188000</td>
<td>-5.04332000</td>
<td>0.04355900</td>
</tr>
<tr>
<td>C</td>
<td>-5.64482000</td>
<td>-5.15749700</td>
<td>0.80744900</td>
</tr>
<tr>
<td>C</td>
<td>-6.60314500</td>
<td>-4.19954100</td>
<td>0.78894700</td>
</tr>
<tr>
<td>N</td>
<td>-6.64278000</td>
<td>0.73475600</td>
<td>0.02179500</td>
</tr>
<tr>
<td>C</td>
<td>-4.70034900</td>
<td>4.88446700</td>
<td>-2.00468400</td>
</tr>
<tr>
<td>C</td>
<td>-3.45706200</td>
<td>5.40441600</td>
<td>-2.13292900</td>
</tr>
<tr>
<td>C</td>
<td>3.37894100</td>
<td>2.65240700</td>
<td>-0.36660600</td>
</tr>
<tr>
<td>N</td>
<td>0.80613400</td>
<td>4.40187300</td>
<td>0.20946600</td>
</tr>
<tr>
<td>H</td>
<td>1.75379700</td>
<td>-2.02622000</td>
<td>-1.93548900</td>
</tr>
<tr>
<td>H</td>
<td>5.18082700</td>
<td>-0.43126400</td>
<td>-0.17995200</td>
</tr>
<tr>
<td>H</td>
<td>-0.58537200</td>
<td>-6.02713200</td>
<td>0.21535000</td>
</tr>
<tr>
<td>H</td>
<td>-3.79730000</td>
<td>-0.93525700</td>
<td>1.06824100</td>
</tr>
<tr>
<td>H</td>
<td>-7.67399400</td>
<td>-4.31616300</td>
<td>0.91516800</td>
</tr>
<tr>
<td>H</td>
<td>-5.58842100</td>
<td>5.10965600</td>
<td>-2.58532000</td>
</tr>
<tr>
<td>H</td>
<td>4.76223700</td>
<td>1.41016400</td>
<td>-1.53184400</td>
</tr>
<tr>
<td>H</td>
<td>8.89046500</td>
<td>-2.37874300</td>
<td>-0.00273500</td>
</tr>
<tr>
<td>H</td>
<td>-5.76412300</td>
<td>-6.22734200</td>
<td>0.93936800</td>
</tr>
<tr>
<td>H</td>
<td>-2.03959800</td>
<td>4.07147700</td>
<td>1.78207800</td>
</tr>
<tr>
<td>H</td>
<td>4.27623800</td>
<td>-1.14796400</td>
<td>-2.02939000</td>
</tr>
<tr>
<td>H</td>
<td>-2.48967900</td>
<td>-2.30739600</td>
<td>-0.24675500</td>
</tr>
<tr>
<td>H</td>
<td>-3.11074500</td>
<td>6.16543800</td>
<td>-2.82349800</td>
</tr>
<tr>
<td>H</td>
<td>-3.31038300</td>
<td>1.67414800</td>
<td>0.49373300</td>
</tr>
<tr>
<td>H</td>
<td>0.15572100</td>
<td>-1.97345800</td>
<td>-0.64438900</td>
</tr>
<tr>
<td>H</td>
<td>2.46935200</td>
<td>2.67017400</td>
<td>-0.95586900</td>
</tr>
<tr>
<td>H</td>
<td>0.16339900</td>
<td>3.61259300</td>
<td>3.31558900</td>
</tr>
<tr>
<td>H</td>
<td>9.23379600</td>
<td>0.18304300</td>
<td>0.70601500</td>
</tr>
<tr>
<td>H</td>
<td>6.65247500</td>
<td>-3.89162400</td>
<td>-0.41824500</td>
</tr>
<tr>
<td>H</td>
<td>1.90275600</td>
<td>-5.50872500</td>
<td>0.05676800</td>
</tr>
<tr>
<td>H</td>
<td>-3.10788700</td>
<td>-6.15285200</td>
<td>0.57318600</td>
</tr>
<tr>
<td>H</td>
<td>-7.62010700</td>
<td>-1.66034400</td>
<td>0.33657900</td>
</tr>
<tr>
<td>H</td>
<td>-6.63130300</td>
<td>3.16282400</td>
<td>-1.08547300</td>
</tr>
<tr>
<td>H</td>
<td>-0.77045100</td>
<td>5.57340200</td>
<td>-1.63526900</td>
</tr>
</tbody>
</table>
SCF Done: $\text{E(RM06)} = -1977.59280402$ A.U. after 7 cycles

1f (Hückel T_1^{ABC})

<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.90412900</td>
<td>3.89828700</td>
<td>2.82208700</td>
</tr>
<tr>
<td>H</td>
<td>7.43874300</td>
<td>2.19644100</td>
<td>1.26180600</td>
</tr>
<tr>
<td>H</td>
<td>-7.33734700</td>
<td>0.80987500</td>
<td>-0.40163000</td>
</tr>
<tr>
<td>H</td>
<td>1.40699200</td>
<td>4.66735600</td>
<td>-0.55719100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7.46686</td>
<td>0.07819</td>
<td>-0.36968</td>
</tr>
<tr>
<td>C</td>
<td>8.3878</td>
<td>0.893</td>
<td>-1.11113</td>
</tr>
<tr>
<td>C</td>
<td>7.66936</td>
<td>1.8542</td>
<td>-1.75827</td>
</tr>
<tr>
<td>C</td>
<td>6.27573</td>
<td>1.66032</td>
<td>-1.46343</td>
</tr>
<tr>
<td>C</td>
<td>5.218</td>
<td>2.4712</td>
<td>-1.81675</td>
</tr>
<tr>
<td>C</td>
<td>3.85831</td>
<td>2.22955</td>
<td>-1.51425</td>
</tr>
<tr>
<td>C</td>
<td>2.94372</td>
<td>3.20824</td>
<td>-1.50038</td>
</tr>
<tr>
<td>C</td>
<td>1.77995</td>
<td>2.60395</td>
<td>-1.1123</td>
</tr>
<tr>
<td>C</td>
<td>0.63663</td>
<td>3.32608</td>
<td>-0.82522</td>
</tr>
<tr>
<td>C</td>
<td>0.61107</td>
<td>2.78012</td>
<td>-0.4733</td>
</tr>
<tr>
<td>C</td>
<td>-1.18905</td>
<td>1.50943</td>
<td>-0.71257</td>
</tr>
<tr>
<td>C</td>
<td>-2.44419</td>
<td>1.47805</td>
<td>-0.14493</td>
</tr>
<tr>
<td>C</td>
<td>-2.67598</td>
<td>2.7343</td>
<td>0.46823</td>
</tr>
<tr>
<td>C</td>
<td>-3.73956</td>
<td>3.21997</td>
<td>1.23567</td>
</tr>
<tr>
<td>C</td>
<td>-4.95158</td>
<td>2.6021</td>
<td>1.50419</td>
</tr>
<tr>
<td>N</td>
<td>5.37385</td>
<td>1.40208</td>
<td>1.0144</td>
</tr>
<tr>
<td>C</td>
<td>6.65013</td>
<td>1.29029</td>
<td>1.43058</td>
</tr>
<tr>
<td>C</td>
<td>7.53943</td>
<td>0.28186</td>
<td>1.02457</td>
</tr>
<tr>
<td>C</td>
<td>7.2604</td>
<td>-0.74748</td>
<td>0.14647</td>
</tr>
<tr>
<td>C</td>
<td>-8.21228</td>
<td>-1.60562</td>
<td>-0.4972</td>
</tr>
<tr>
<td>C</td>
<td>-7.53906</td>
<td>-2.39069</td>
<td>1.38309</td>
</tr>
<tr>
<td>C</td>
<td>-6.14145</td>
<td>-2.08753</td>
<td>-1.27342</td>
</tr>
<tr>
<td>C</td>
<td>-5.11078</td>
<td>-2.7047</td>
<td>-1.95405</td>
</tr>
<tr>
<td>C</td>
<td>-3.73638</td>
<td>-2.57472</td>
<td>1.69396</td>
</tr>
<tr>
<td>N</td>
<td>-3.20542</td>
<td>-1.86651</td>
<td>-0.68207</td>
</tr>
<tr>
<td>C</td>
<td>-1.86562</td>
<td>-2.1481</td>
<td>-0.71062</td>
</tr>
<tr>
<td>C</td>
<td>-1.01624</td>
<td>-1.73927</td>
<td>0.30673</td>
</tr>
<tr>
<td>C</td>
<td>0.37906</td>
<td>-1.90917</td>
<td>0.3603</td>
</tr>
<tr>
<td>C</td>
<td>1.34757</td>
<td>-2.13867</td>
<td>-0.64782</td>
</tr>
<tr>
<td>C</td>
<td>2.59771</td>
<td>-2.14041</td>
<td>-0.06247</td>
</tr>
<tr>
<td>C</td>
<td>2.43725</td>
<td>-1.93438</td>
<td>1.32659</td>
</tr>
<tr>
<td>C</td>
<td>3.38409</td>
<td>-2.0136</td>
<td>2.36363</td>
</tr>
<tr>
<td>C</td>
<td>4.75595</td>
<td>-1.89364</td>
<td>2.21434</td>
</tr>
<tr>
<td>N</td>
<td>5.38553</td>
<td>-1.37079</td>
<td>1.11988</td>
</tr>
<tr>
<td>C</td>
<td>6.70552</td>
<td>-1.47835</td>
<td>1.37675</td>
</tr>
<tr>
<td>C</td>
<td>7.71517</td>
<td>-0.89006</td>
<td>0.58861</td>
</tr>
<tr>
<td>N</td>
<td>6.21248</td>
<td>0.54269</td>
<td>-0.6595</td>
</tr>
<tr>
<td>C</td>
<td>3.27604</td>
<td>0.93806</td>
<td>-1.15929</td>
</tr>
<tr>
<td>C</td>
<td>1.97157</td>
<td>1.17502</td>
<td>-0.90771</td>
</tr>
<tr>
<td>N</td>
<td>-1.55828</td>
<td>3.50103</td>
<td>0.21678</td>
</tr>
<tr>
<td>C</td>
<td>-5.98805</td>
<td>3.24533</td>
<td>2.29741</td>
</tr>
<tr>
<td>C</td>
<td>-7.05692</td>
<td>2.41892</td>
<td>2.25451</td>
</tr>
<tr>
<td>N</td>
<td>-6.02498</td>
<td>-1.08994</td>
<td>-0.33964</td>
</tr>
<tr>
<td>C</td>
<td>-2.71916</td>
<td>-3.31112</td>
<td>-2.42831</td>
</tr>
<tr>
<td>C</td>
<td>-1.54433</td>
<td>-3.03987</td>
<td>-1.8176</td>
</tr>
<tr>
<td>N</td>
<td>1.08591</td>
<td>-1.78798</td>
<td>1.539</td>
</tr>
<tr>
<td>C</td>
<td>5.72434</td>
<td>-2.34327</td>
<td>3.2008</td>
</tr>
<tr>
<td>C</td>
<td>6.94531</td>
<td>-2.13539</td>
<td>2.65227</td>
</tr>
</tbody>
</table>
SCF Done:

\[\text{E(RM06)} = -1977.15482365 \quad \text{A.U. after 19 cycles} \]

1g (Hückel T2^R,F)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.73004</td>
<td>0.71804</td>
<td>-1.29239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.57215</td>
<td>-3.46284</td>
<td>-2.03663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.90423</td>
<td>-3.96997</td>
<td>-3.26976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-7.94277</td>
<td>-3.14085</td>
<td>-2.05202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-9.27837</td>
<td>-1.57383</td>
<td>-0.30865</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-8.03436</td>
<td>2.54706</td>
<td>2.70609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5.89151</td>
<td>4.20537</td>
<td>2.79279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.23254</td>
<td>0.46452</td>
<td>-0.56077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>8.04495</td>
<td>2.6482</td>
<td>-2.39232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>9.46208</td>
<td>0.75571</td>
<td>-1.11047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.9204</td>
<td>-2.35192</td>
<td>3.07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.48195</td>
<td>-2.79444</td>
<td>4.15677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.12817</td>
<td>-2.22808</td>
<td>-1.70386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.40397</td>
<td>4.42579</td>
<td>0.5905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.65999</td>
<td>-1.6349</td>
<td>2.4411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>8.75334</td>
<td>-1.10808</td>
<td>0.82797</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-8.57408</td>
<td>0.3669</td>
<td>1.35173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-3.61536</td>
<td>4.2193</td>
<td>1.6568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.74141</td>
<td>4.41202</td>
<td>-0.82454</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.45525</td>
<td>3.41689</td>
<td>-2.29998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.50027</td>
<td>-1.27301</td>
<td>1.16661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.01225</td>
<td>-2.23095</td>
<td>3.36604</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5.40539</td>
<td>-3.41413</td>
<td>-2.72535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.77511</td>
<td>-0.02297</td>
<td>-1.13123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-3.14967</td>
<td>0.65546</td>
<td>-0.15796</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.41979</td>
<td>0.1783</td>
<td>-0.12835</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5.15129</td>
<td>-0.65426</td>
<td>-0.05007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.5611</td>
<td>-2.29233</td>
<td>-0.53157</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above shows the Cartesian coordinates of atoms in the molecule.
SCF Done: E(RM06) = -1977.65391418 A.U. after 19 cycles
1h (Hückel T2c-o)

C -7.0665 -0.22027 -0.06575
H 0.51184 -2.75745 2.30734
H -1.10581 -1.66895 1.60006
H -4.72755 4.74903 1.73923
H -7.2391 3.8836 1.23591
H 0.03619 2.42494 -1.60149
H -0.03619 2.42492 1.60107
H 5.23535 -3.94573 1.42377
H 8.22824 1.48463 -0.49573
H 2.30422 3.63055 -1.52697
H -2.30419 3.63059 1.52691
H 1.96046 0.95174 1.54679
H -8.2282 1.48464 0.49562
H -5.23538 -3.94577 -1.4238
H -1.96051 0.95171 -1.54677
H -3.33277 -0.21196 1.42269
H -4.97215 -0.28002 -0.42711
H 3.33273 -0.21199 -1.42256
H 4.97223 -0.27989 0.4273

\[\text{Hückel } T_{266} \]

\begin{align*}
\text{C} & : 4.82693 -2.28698 0.4187 \\
\text{C} & : 4.93641 -3.69104 0.46872 \\
\text{C} & : 3.68704 -4.20175 0.77765 \\
\text{C} & : 2.81229 -3.11116 0.94104 \\
\text{C} & : 1.45006 -3.14465 1.31094 \\
\text{C} & : 0.64325 -2.05936 1.53526 \\
\text{N} & : 1.0761 -0.74933 1.44934 \\
\text{C} & : -0.01258 -0.01016 1.64292 \\
\text{C} & : 0.0578 1.41211 1.63018 \\
\text{C} & : -0.97513 2.27432 1.39508 \\
\text{C} & : -0.90343 3.71679 1.43869 \\
\text{C} & : -2.11506 4.21981 1.10022 \\
\text{C} & : -2.99741 3.11328 0.81422 \\
\text{C} & : -4.31256 3.15563 0.43605 \\
\text{C} & : -5.12744 2.01533 0.20669 \\
\text{N} & : -4.68242 0.75512 0.11355 \\
\text{C} & : -5.82415 -0.01298 -0.01407 \\
\text{C} & : -5.8775 -1.37379 -0.18469 \\
\text{C} & : -4.82679 -2.28708 -0.41878 \\
\text{C} & : -4.93621 -3.69115 -0.46873 \\
\text{C} & : -3.68684 -4.20183 -0.77771 \\
\text{C} & : -2.81209 -3.11122 -0.94099 \\
\text{C} & : -1.44986 -3.14464 -1.31088 \\
\text{C} & : -0.64313 -2.05928 -1.53512 \\
\text{N} & : -1.07612 -0.7493 -1.44911 \\
\text{C} & : 0.01248 -0.01002 -1.64279 \\
\text{C} & : -0.05797 1.41222 -1.62994 \\
\text{C} & : 0.97498 2.27444 -1.39495 \\
\text{C} & : 0.90323 3.71691 -1.43841 \\
\text{C} & : 2.11488 4.21993 -1.09999 \\
\text{C} & : 2.99725 3.11339 -0.8141 \\
\text{C} & : 4.31241 3.15571 -0.43594 \\
\text{C} & : 5.12736 2.01542 -0.20681 \\
\text{N} & : 4.6824 0.75519 -0.11361 \\
\text{C} & : 5.82417 -0.01286 0.01382 \\
\end{align*}
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.8776</td>
<td>-1.37367</td>
<td>0.18446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3.52701</td>
<td>-1.96823</td>
<td>0.69811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.77323</td>
<td>-2.11397</td>
<td>1.83534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.19813</td>
<td>-0.8303</td>
<td>1.883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-2.26931</td>
<td>1.96596</td>
<td>1.02419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.57668</td>
<td>2.09449</td>
<td>0.11675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-7.01265</td>
<td>0.81875</td>
<td>0.01509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-3.52685</td>
<td>-1.96831</td>
<td>-0.69808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.77332</td>
<td>-2.11376</td>
<td>-1.83536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.19811</td>
<td>-0.83004</td>
<td>-1.8829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2.26919</td>
<td>1.96607</td>
<td>-1.02425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.57661</td>
<td>2.09463</td>
<td>-0.1171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7.01264</td>
<td>0.8189</td>
<td>-0.01561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.85188</td>
<td>-4.23978</td>
<td>0.28489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.40487</td>
<td>-5.24028</td>
<td>0.89918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.35461</td>
<td>-3.01985</td>
<td>1.97044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.19896</td>
<td>-0.47307</td>
<td>2.10115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.00655</td>
<td>4.2581</td>
<td>1.71587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.41647</td>
<td>5.25914</td>
<td>1.05006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-7.15694</td>
<td>3.0094</td>
<td>0.15984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-8.03032</td>
<td>0.45262</td>
<td>-0.06342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5.85169</td>
<td>-4.2399</td>
<td>-0.28494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-3.40464</td>
<td>-5.24035</td>
<td>-0.89926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.3548</td>
<td>-3.01957</td>
<td>-1.97047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.19893</td>
<td>-0.4727</td>
<td>-2.10093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.00632</td>
<td>4.25823</td>
<td>-1.71549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.41628</td>
<td>5.25926</td>
<td>-1.04982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.15683</td>
<td>3.00956</td>
<td>-0.16024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>8.03034</td>
<td>0.4528</td>
<td>0.06268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.1261</td>
<td>-1.03433</td>
<td>0.79743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.63769</td>
<td>1.06431</td>
<td>0.72897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-3.12593</td>
<td>-1.03441</td>
<td>-0.79741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.63769</td>
<td>1.06435</td>
<td>-0.72934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.77981</td>
<td>4.13524</td>
<td>-0.36488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.87018</td>
<td>-1.82338</td>
<td>0.16814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.00879</td>
<td>-4.13588</td>
<td>-1.41364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.00905</td>
<td>-4.13592</td>
<td>1.4136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.77999</td>
<td>4.13516</td>
<td>0.36514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.04747</td>
<td>1.85114</td>
<td>1.75176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.04767</td>
<td>1.85125</td>
<td>-1.75141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-6.87008</td>
<td>-1.82352</td>
<td>-0.16849</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCF Done: $E_{(RM06)} = -1977.68236697$ A.U. after 22 cycles
\[Z_2 \text{ (Hückel [34])} \]

\begin{align*}
C & \quad 7.55698 & 1.11776 & -0.00852 \\
N & \quad 6.77214 & -0.00014 & -0.00019 \\
C & \quad 7.55689 & -1.1181 & 0.00813 \\
C & \quad 7.08556 & -2.4347 & 0.00889 \\
C & \quad 5.75518 & -2.82015 & -0.04616 \\
N & \quad 4.71999 & -1.94202 & -0.14193 \\
C & \quad 3.60758 & -2.69747 & -0.16145 \\
C & \quad 2.34715 & -2.0823 & -0.29078 \\
C & \quad 1.08628 & -2.63603 & -0.15093 \\
N & \quad -0.01012 & -1.85998 & -0.38137 \\
C & \quad -1.07162 & -2.63114 & -0.11742 \\
C & \quad -2.36246 & -2.07769 & -0.22074 \\
C & \quad -3.59687 & -2.68909 & -0.0798 \\
N & \quad -4.73445 & -1.93326 & -0.08717 \\
C & \quad -5.74814 & -2.80357 & 0.02571 \\
C & \quad -7.10035 & -2.42543 & 0.06372 \\
C & \quad -7.56047 & -1.12714 & 0.03268 \\
C & \quad -8.92702 & -0.68043 & 0.02408 \\
C & \quad -8.92693 & 0.68024 & -0.02433 \\
C & \quad -7.56032 & 1.12141 & -0.03287 \\
C & \quad -7.10022 & 2.42511 & -0.06395 \\
C & \quad -5.74807 & 2.80343 & -0.02587 \\
N & \quad -4.73424 & 1.93331 & 0.08737 \\
C & \quad -3.59671 & 2.68933 & 0.07989 \\
C & \quad -2.3623 & 2.07818 & 0.22112 \\
C & \quad -1.07151 & 2.63166 & 0.11784 \\
C & \quad -0.66057 & 3.96858 & -0.32063 \\
C & \quad 0.68855 & 3.9705 & -0.29756 \\
C & \quad 1.08642 & 2.63631 & 0.15124 \\
C & \quad 2.34725 & 2.08239 & 0.29077 \\
C & \quad 3.60773 & 2.69743 & 0.16146 \\
N & \quad 4.72006 & 1.94185 & 0.14171 \\
C & \quad 5.75532 & 2.81987 & 0.04601 \\
C & \quad 7.08569 & 2.43437 & -0.00917 \\
C & \quad 8.91209 & 0.68603 & -0.00949 \\
C & \quad 8.91204 & -0.68647 & 0.00906 \\
C & \quad 5.27965 & -4.19254 & -0.02221 \\
C & \quad 3.93076 & -4.11963 & -0.08759 \\
C & \quad -3.9226 & -4.10856 & 0.03784 \\
C & \quad 0.68831 & -3.97001 & 0.29831 \\
C & \quad -0.6608 & -3.96796 & 0.32148 \\
C & \quad -5.27031 & -4.17908 & 0.0946 \\
N & \quad -6.77737 & -0.00021 & -0.00009 \\
C & \quad -5.27046 & 4.17899 & -0.09514 \\
C & \quad -3.92274 & 4.10871 & -0.03827 \\
N & \quad -0.01002 & 1.86033 & 0.38149 \\
C & \quad 3.93106 & 4.11956 & 0.08788 \\
C & \quad 5.27995 & 4.19233 & 0.02237 \\
H & \quad -5.75184 & -0.00051 & 0. \\
H & \quad -7.8522 & -3.21018 & 0.11791 \\
H & \quad -7.85213 & 3.20978 & -0.11824 \\
H & \quad -2.38465 & 1.01018 & 0.43528 \\
H & \quad 2.3659 & 1.01748 & 0.52114 \\
H & \quad 7.84281 & 3.21556 & -0.05278 \\
H & \quad 7.84268 & -3.21588 & 0.05256 \\
H & \quad 2.36591 & -1.01746 & -0.52146 \\
H & \quad -2.38494 & -1.00967 & -0.43476 \\
H & \quad -5.8957 & 5.0621 & -0.16783
\end{align*}
H -3.22339 4.93399 -0.02451
H -1.30507 4.77026 -0.65725
H 1.34297 4.77252 -0.61327
H 3.23043 4.94251 0.13722
H 5.90513 5.0769 -0.0265
H 9.76591 1.3521 -0.01625
H 9.76582 -1.35259 0.01581
H 5.90473 -5.07716 0.0268
H 3.23003 -4.94251 -0.13673
H 1.3427 -4.77195 0.61429
H -1.30539 -4.76938 0.65855
H -3.2231 -4.9337 0.0237
H -5.8954 -5.06232 0.16697
H -9.77996 -1.34752 0.04576
H -9.77977 1.34746 -0.04608
H 5.74625 -0.00014 -0.00017

SCF Done: E(RM06) = -1976.38849696 A.U. after 7 cycles

2b (Hückel [34] TB,C,E,F,H)

<table>
<thead>
<tr>
<th></th>
<th>Atomic Number</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>5.07649</td>
<td>3.95632</td>
<td>-0.14994</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3.70149</td>
<td>3.92503</td>
<td>-0.19229</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.32058</td>
<td>5.19417</td>
<td>-0.26485</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.95399</td>
<td>5.61766</td>
<td>-0.31038</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.85693</td>
<td>4.83987</td>
<td>-0.05636</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>-0.42696</td>
<td>5.33221</td>
<td>-0.22588</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-1.22973</td>
<td>4.33045</td>
<td>0.09993</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-2.64785</td>
<td>4.44372</td>
<td>-0.05388</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-3.58543</td>
<td>3.5514</td>
<td>0.39217</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>-4.88749</td>
<td>3.58555</td>
<td>-0.09295</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-5.44945</td>
<td>2.48004</td>
<td>0.36551</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-6.75096</td>
<td>2.05183</td>
<td>-0.06084</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-7.11025</td>
<td>0.73082</td>
<td>-0.11834</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>-6.20382</td>
<td>-0.27695</td>
<td>0.12947</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-6.82239</td>
<td>-1.4106</td>
<td>-0.1457</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-6.16405</td>
<td>-2.6803</td>
<td>-0.13424</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-4.80182</td>
<td>-2.82457</td>
<td>-0.05777</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-3.77667</td>
<td>-1.8037</td>
<td>-0.0159</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-2.56782</td>
<td>-2.4062</td>
<td>-0.03176</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-2.75154</td>
<td>-3.83893</td>
<td>-0.07425</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-1.80824</td>
<td>-4.83305</td>
<td>-0.05845</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-0.4095</td>
<td>-4.60575</td>
<td>-0.2205</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>0.50444</td>
<td>-5.46553</td>
<td>0.2125</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.72125</td>
<td>-4.88746</td>
<td>-0.08007</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2.90719</td>
<td>-5.46185</td>
<td>0.3087</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.17946</td>
<td>-4.83835</td>
<td>0.28482</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.45868</td>
<td>-5.41818</td>
<td>0.36751</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>6.39467</td>
<td>-4.39609</td>
<td>0.3233</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.7065</td>
<td>-3.17157</td>
<td>0.22848</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>6.24833</td>
<td>-1.8738</td>
<td>0.19206</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.6053</td>
<td>-0.66826</td>
<td>-0.00435</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>6.32652</td>
<td>0.49901</td>
<td>0.09277</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.44692</td>
<td>1.47901</td>
<td>-0.11116</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.87076</td>
<td>2.83598</td>
<td>-0.07842</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.56113</td>
<td>5.32769</td>
<td>-0.19765</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.45919</td>
<td>6.10755</td>
<td>-0.29197</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.82538</td>
<td>3.45597</td>
<td>0.40375</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-0.47772</td>
<td>3.13163</td>
<td>0.50006</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-8.38656</td>
<td>0.16236</td>
<td>-0.54021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-3.41151</td>
<td>2.42392</td>
<td>1.30491</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4.57627</td>
<td>1.74861</td>
<td>1.28995</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-8.2168</td>
<td>-1.17973</td>
<td>-0.53822</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-4.12214</td>
<td>-4.03228</td>
<td>-0.06075</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.20089</td>
<td>-3.46253</td>
<td>-0.91016</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.5348</td>
<td>-3.64119</td>
<td>-0.82005</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4.36458</td>
<td>-3.48108</td>
<td>0.18975</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.21183</td>
<td>-0.38074</td>
<td>-0.31869</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.10891</td>
<td>0.96634</td>
<td>-0.38336</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-9.27535</td>
<td>0.72749</td>
<td>-0.79599</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.85796</td>
<td>0.86347</td>
<td>1.84361</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.54491</td>
<td>2.22754</td>
<td>1.92168</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.89475</td>
<td>2.16923</td>
<td>0.76406</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.7025</td>
<td>2.85812</td>
<td>0.61015</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.39871</td>
<td>7.18811</td>
<td>-0.35634</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.60278</td>
<td>5.62681</td>
<td>-0.17573</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.24965</td>
<td>1.58034</td>
<td>-0.62026</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-8.93775</td>
<td>-1.94716</td>
<td>-0.79835</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.00731</td>
<td>-0.7488</td>
<td>0.03288</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.60497</td>
<td>-1.91994</td>
<td>0.04119</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.32285</td>
<td>-2.69629</td>
<td>-1.46848</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.30759</td>
<td>-3.05954</td>
<td>-1.31006</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.64656</td>
<td>-6.48287</td>
<td>0.42001</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.47342</td>
<td>-4.48915</td>
<td>0.33824</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.41551</td>
<td>-1.0872</td>
<td>-0.52519</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.56458</td>
<td>-4.93505</td>
<td>-0.13989</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.62676</td>
<td>-2.81247</td>
<td>0.35487</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.3238</td>
<td>-1.80535</td>
<td>0.34956</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.94716</td>
<td>2.97742</td>
<td>0.0171</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.75818</td>
<td>6.6579</td>
<td>-0.56983</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-3.0003</td>
<td>5.2867</td>
<td>-0.64627</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-7.43124</td>
<td>2.8143</td>
<td>-0.43651</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-6.78087</td>
<td>-3.57218</td>
<td>-0.24308</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.86061</td>
<td>-6.47611</td>
<td>0.70104</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.11492</td>
<td>-5.86212</td>
<td>0.12417</td>
<td></td>
</tr>
</tbody>
</table>

SCF Done: $E(RM06) = -1976.34405050$ A.U. after 8 cycles

$2c$ (Hückel [34]$\theta^{20,25,8,6,4}$)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.93127</td>
<td>2.30598</td>
<td>-0.13772</td>
</tr>
<tr>
<td>N</td>
<td>4.64986</td>
<td>1.94843</td>
<td>-0.00316</td>
</tr>
<tr>
<td>C</td>
<td>3.99167</td>
<td>3.1024</td>
<td>0.34849</td>
</tr>
<tr>
<td>C</td>
<td>2.62812</td>
<td>3.2801</td>
<td>0.46919</td>
</tr>
<tr>
<td>C</td>
<td>1.60148</td>
<td>2.32488</td>
<td>0.27121</td>
</tr>
<tr>
<td>N</td>
<td>0.31261</td>
<td>2.67297</td>
<td>0.35946</td>
</tr>
<tr>
<td>C</td>
<td>-0.36918</td>
<td>1.50029</td>
<td>0.14754</td>
</tr>
<tr>
<td>C</td>
<td>-1.7296</td>
<td>1.31559</td>
<td>0.11458</td>
</tr>
<tr>
<td>C</td>
<td>-2.79566</td>
<td>2.24756</td>
<td>0.10523</td>
</tr>
<tr>
<td>N</td>
<td>-4.02189</td>
<td>1.76336</td>
<td>-0.09225</td>
</tr>
<tr>
<td>C</td>
<td>-4.83951</td>
<td>2.84694</td>
<td>-0.26875</td>
</tr>
<tr>
<td>C</td>
<td>-6.14559</td>
<td>2.70499</td>
<td>-0.70737</td>
</tr>
<tr>
<td>C</td>
<td>-6.73165</td>
<td>1.45748</td>
<td>-1.03085</td>
</tr>
<tr>
<td>N</td>
<td>-6.11059</td>
<td>0.28139</td>
<td>-0.77063</td>
</tr>
<tr>
<td>C</td>
<td>-6.75719</td>
<td>-0.76108</td>
<td>-1.35974</td>
</tr>
<tr>
<td>C</td>
<td>-6.21272</td>
<td>-2.06314</td>
<td>-1.36306</td>
</tr>
<tr>
<td>C</td>
<td>-5.11351</td>
<td>-2.42916</td>
<td>-0.59872</td>
</tr>
<tr>
<td>C</td>
<td>-4.22366</td>
<td>-3.5672</td>
<td>-0.77848</td>
</tr>
<tr>
<td>C</td>
<td>-3.19834</td>
<td>-3.38729</td>
<td>0.09528</td>
</tr>
<tr>
<td>C</td>
<td>-3.52864</td>
<td>-2.18678</td>
<td>0.84856</td>
</tr>
</tbody>
</table>

46
SCF Done: E(RM06) = -1976.38427789 A.U. after 7 cycles

2d (Hückel [34]7020,25,8R)

C 5.22334 2.12126 -1.12127
H -1.3644 0.43241 -0.51796
H 4.79712 -4.20496 -1.32025
H 6.8799 1.81794 -2.42957
H 2.21788 4.04939 1.09717
H 3.07082 0.13038 2.28809
H 1.35521 1.69689 3.63698
H -1.35431 1.6972 3.63662
H -4.79659 -4.20519 -1.31993
H -3.07005 0.1308 2.28765
H -6.88044 1.81733 -2.42942
H -2.21861 4.04914 1.09737
H 4.55243 -0.52874 -0.52778
H -4.55249 -0.52886 -0.52773

SCF Done: E(RM06) = -1976.37659028 A.U. after 8 cycles

2e (Möbius [34] T^RGEH)

C -7.07529 0.13943 -0.23783
N -6.08816 -0.70511 0.24927
C -6.57565 -1.92365 0.1209
C -5.77535 -3.11087 0.28532
C -4.49558 -3.14902 0.75037
N -3.6934 -4.27063 0.54288
C -2.48542 3.89615 0.91669
C -1.34974 -4.73415 0.64075
C -0.05904 -4.13158 0.50518
N -0.95259 -5.21003 0.16757
C 2.04185 -4.47363 0.03978
C 3.29328 5.07072 -0.32566
C 4.46806 -4.40904 -0.55342
N 4.62357 -3.03702 -0.47411
C 5.90845 -2.80655 -0.67749
C 6.50346 1.50647 -0.608
C 5.79266 -0.34055 -0.53474
C 4.37852 -0.10683 -0.74306
C 4.10375 1.18648 -0.46233
C 5.32864 1.83816 -0.04453
C 5.50884 3.06788 0.52331
C 4.44479 3.9661 0.8583
N 3.22312 3.91864 0.35161
C 2.47994 4.80629 1.10658
C 1.13889 5.01308 0.93966
C 0.36393 4.5287 -0.15365
C 0.74362 4.2334 -1.46979
C -0.41648 4.01157 -2.20663
C -1.50948 4.09725 -1.33581
C -2.8709 3.79502 -1.60729
C -3.77946 3.22259 -0.75779
N -5.05928 2.92785 -1.20964
C -5.551 2.09142 -0.31468
C -6.8175 1.4427 -0.54726
C -3.73511 -2.08464 1.39454
C -8.25899 -0.62299 -0.61052
C -7.94612 -1.92005 -0.39221
C -2.47987 -2.55366 1.51769
C 5.74992 5.04449 -0.84698
C 0.47993 -2.95592 0.5855
C 6.65718 -4.04638 -0.90901
C 1.79125 -3.05229 0.30284
N 6.33198 0.89424 -0.20885
C 4.55792 4.95601 1.93205
C 3.31281 5.44879 2.11341
C -3.53912 2.59743 0.53541
N -1.00545 4.42029 -0.09713
C -4.64264 1.86115 0.80089
H -1.64172 -2.07183 2.0034
H 3.70543 -0.88382 -1.07735
H 7.72311 -4.11442 -1.09721
H 5.46151 5.18426 2.48671
H -4.84064 1.20865 1.64121
H -8.55299 -2.79992 -0.57474
H 5.90736 -6.11044 -0.96578
H 1.77047 4.22553 -1.80855
H -4.14343 -1.12957 1.69223
H 2.54508 -2.27915 0.26737
H 2.975 6.18698 2.83216
H 3.15824 1.71086 -0.50757
H -0.07602 -2.05028 0.78192
H -2.61856 2.62911 1.10645
H -0.49042 3.75723 -3.25654
H -9.17521 -0.2066 -1.01275
H -6.17838 -4.04387 -0.10781
H -1.56019 -5.7809 0.42754
H 3.28043 -6.15575 -0.41997
H 7.58982 -1.46072 -0.53212
H 6.50619 3.33297 0.87484
H 0.62368 5.61138 1.69275
H -3.20609 3.94181 -2.63365
H -7.552 2.00019 -1.12765
H 7.25958 1.00432 0.17234
H -1.57475 4.63537 0.70867
SCF Done: $E(RM06) = -1976.33206100$ A.U. after 7 cycles

$2f(M"obius [34]T^1RC)$

C 7.40991 0.34271 -0.56963
N 6.0895 0.74463 -0.58878
C 6.06711 1.88468 -1.27093
C 4.89809 2.69276 -1.45559
C 3.68576 2.53547 -0.847
N 2.62595 3.38382 -1.16049
C 1.59927 2.91629 -0.47964
C 0.32304 3.57673 -0.47221
C -0.86598 2.99222 -0.15366
N -1.99802 3.75947 0.08386
C -2.95296 2.88851 0.35817
C -4.22572 3.37038 0.79311
C -5.37983 2.67835 1.02435
N -5.62112 1.33764 0.76737
C -6.90527 1.16435 1.06306
C -7.6558 -0.01265 0.79758
C -7.21368 -1.11309 0.11544
C -8.04859 -2.16136 -0.42899
C -7.27263 -2.96256 -1.1921
C -5.90713 -2.49298 -1.09907
C -4.82553 -3.05676 -1.71677
C -3.45702 -2.74951 -1.48322
N -3.00343 -2.01182 -0.47966
C -1.61964 -2.10658 -0.55961
<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.80029</td>
<td>-1.70952</td>
<td>0.45661</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.63881</td>
<td>-1.79202</td>
<td>0.44056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.49939</td>
<td>-1.63264</td>
<td>-0.73522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.76848</td>
<td>-1.75452</td>
<td>-0.28982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.66296</td>
<td>-2.01614</td>
<td>1.14258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.65142</td>
<td>-2.35445</td>
<td>2.02647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.05531</td>
<td>-2.29298</td>
<td>1.79568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.6285</td>
<td>-1.4759</td>
<td>0.86923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.99199</td>
<td>-1.60173</td>
<td>0.89852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.83661</td>
<td>-0.75891</td>
<td>0.14241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.23144</td>
<td>1.27428</td>
<td>-1.31153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7.38823</td>
<td>2.23888</td>
<td>-1.76129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.2703</td>
<td>1.54899</td>
<td>0.14361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.95749</td>
<td>1.76099</td>
<td>0.35601</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-6.58213</td>
<td>3.33103</td>
<td>1.53482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-1.18406</td>
<td>1.56905</td>
<td>-0.04043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-2.49866</td>
<td>1.49638</td>
<td>0.25179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-7.53538</td>
<td>2.38142</td>
<td>1.57708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-5.92827</td>
<td>-1.38495</td>
<td>-0.28556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-2.37644</td>
<td>-3.32197</td>
<td>-2.28842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-1.22807</td>
<td>-2.8951</td>
<td>-1.73105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.33268</td>
<td>-2.00171</td>
<td>1.54292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6.09881</td>
<td>-2.99178</td>
<td>2.43432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7.29591</td>
<td>-2.58636</td>
<td>1.85817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-0.50264</td>
<td>0.74849</td>
<td>-0.23407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-0.21458</td>
<td>-3.14926</td>
<td>-2.01491</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-2.50976</td>
<td>-3.97131</td>
<td>-3.14681</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-7.56851</td>
<td>-3.82918</td>
<td>-1.77054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-9.11705</td>
<td>-2.22349</td>
<td>-0.26267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-8.56955</td>
<td>2.46637</td>
<td>1.89158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-6.6472</td>
<td>4.37709</td>
<td>1.81158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.30523</td>
<td>1.24655</td>
<td>1.05331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>7.62494</td>
<td>3.12138</td>
<td>-2.34447</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9.30296</td>
<td>1.19574</td>
<td>-1.45449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>8.2934</td>
<td>-2.92766</td>
<td>2.10495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5.95864</td>
<td>-3.7334</td>
<td>3.21034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1.16529</td>
<td>-1.41295</td>
<td>-1.74293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>8.90338</td>
<td>-0.97401</td>
<td>0.17266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>-8.71617</td>
<td>0.01056</td>
<td>1.0401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-4.25094</td>
<td>4.44569</td>
<td>0.967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0.31616</td>
<td>4.64132</td>
<td>-0.70098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4.97978</td>
<td>3.53581</td>
<td>-2.14108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>-1.26437</td>
<td>-1.36225</td>
<td>1.37938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.32631</td>
<td>-2.71176</td>
<td>3.00258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>-5.03779</td>
<td>-3.86192</td>
<td>-2.41747</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.91941</td>
<td>0.83836</td>
<td>0.63337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>-3.11664</td>
<td>0.61438</td>
<td>0.38153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>-5.12624</td>
<td>-0.80112</td>
<td>-0.05964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>3.67859</td>
<td>-1.71009</td>
<td>-0.87691</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5.21354</td>
<td>-0.71063</td>
<td>0.3313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCF Done: E(RM06) = -1976.37180804 A.U. after 7 cycles

2g (Twisted-Hückel [34] T20,p)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>N</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.09689</td>
<td>1.93265</td>
<td>0.91461</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-4.82595</td>
<td>1.5075</td>
<td>0.90989</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-4.08509</td>
<td>2.57133</td>
<td>1.34238</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2.72507</td>
<td>2.55242</td>
<td>1.58845</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1.87195</td>
<td>1.42564</td>
<td>1.60555</td>
<td></td>
</tr>
</tbody>
</table>
6h

\[\text{SCF Done: E(RM06) = -1976.39833799 \ A.U. after 9 cycles} \]

\[\text{2h (Twisted-Hückel \{34\}72^{CG})} \]

\[
\begin{align*}
\text{C} & \quad 7.08604 \quad -0.14114 \quad 0.01179 \\
\text{N} & \quad 5.90846 \quad -0.69348 \quad 0.42296 \\
\text{C} & \quad 6.12269 \quad -0.94161 \quad 0.92811 \\
\text{C} & \quad 5.10856 \quad -2.75668 \quad 1.45935 \\
\text{C} & \quad 3.79888 \quad -2.36117 \quad 1.66114 \\
\text{N} & \quad 3.3624 \quad -1.08442 \quad 1.43098 \\
\text{C} & \quad 2.06283 \quad -1.08047 \quad 1.74214 \\
\text{C} & \quad 1.33269 \quad 0.13356 \quad 1.67583 \\
\text{C} & \quad -0.03158 \quad 0.3163 \quad 1.71761 \\
\text{N} & \quad -0.54995 \quad 1.58466 \quad 1.70692 \\
\text{C} & \quad -1.87153 \quad 1.42532 \quad 1.60576 \\
\text{C} & \quad -2.72455 \quad 2.55208 \quad 1.58849 \\
\text{C} & \quad -4.08464 \quad 2.57101 \quad 1.34249 \\
\text{N} & \quad -4.82555 \quad 1.50726 \quad 0.91006 \\
\text{C} & \quad -6.09649 \quad 1.93253 \quad 0.91481 \\
\text{C} & \quad -7.18999 \quad 1.11949 \quad 0.55026 \\
\text{C} & \quad -7.07637 \quad -0.13795 \quad -0.01032 \\
\text{C} & \quad -8.1189 \quad -1.09118 \quad -0.28642 \\
\text{C} & \quad -7.54202 \quad -2.20166 \quad -0.82293 \\
\text{C} & \quad -6.12889 \quad -1.95639 \quad -0.9359 \\
\text{C} & \quad -5.15092 \quad -2.77226 \quad -1.47382 \\
\text{C} & \quad -3.81211 \quad -2.37137 \quad -1.65693 \\
\text{N} & \quad -3.38704 \quad -1.12405 \quad -1.41439 \\
\text{C} & \quad -2.05321 \quad -1.11558 \quad -1.70504 \\
\text{C} & \quad -1.34551 \quad 0.06875 \quad -1.61047 \\
\text{C} & \quad 0.04919 \quad 0.27539 \quad -1.67252 \\
\text{C} & \quad 1.12166 \quad -0.72551 \quad -1.59294 \\
\text{C} & \quad 2.27659 \quad -0.03063 \quad -1.53693 \\
\text{C} & \quad 1.89401 \quad 1.37817 \quad -1.59109 \\
\text{C} & \quad 2.70532 \quad 2.49299 \quad -1.57569 \\
\text{C} & \quad 4.10724 \quad 2.52538 \quad -1.37709 \\
\text{N} & \quad 4.83199 \quad 1.50205 \quad -0.91185 \\
\text{C} & \quad 6.13066 \quad 1.92674 \quad -0.95594 \\
\text{C} & \quad 7.1968 \quad 1.13281 \quad -0.56767 \\
\text{C} & \quad 8.10875 \quad -1.09011 \quad 0.27498 \\
\text{C} & \quad 7.51274 \quad -2.207 \quad 0.81828 \\
\text{C} & \quad 2.71644 \quad -3.19305 \quad 2.15385 \\
\text{C} & \quad 1.62063 \quad -2.39722 \quad 2.19174 \\
\text{C} & \quad -4.93551 \quad 3.7312 \quad 1.58324 \\
\text{C} & \quad -1.10154 \quad -0.68178 \quad 1.64555 \\
\text{C} & \quad -2.25519 \quad 0.012 \quad 1.56358 \\
\text{C} & \quad -6.20226 \quad 3.3213 \quad 1.351 \\
\text{N} & \quad -5.90386 \quad -0.71062 \quad -0.4178 \\
\text{C} & \quad -2.72597 \quad -3.21716 \quad -2.13653 \\
\text{C} & \quad -1.61982 \quad -2.43719 \quad -2.14718 \\
\text{N} & \quad 0.53337 \quad 1.51794 \quad -1.68301
\end{align*}
\]
C 4.94424 3.67375 -1.69998
C 6.22011 3.28443 -1.4646
H -0.9773 -1.75618 1.57928
H 9.15823 -0.94028 0.05411
H 7.99038 -3.12686 1.13184
H 2.79851 -4.23704 2.43487
H 0.63162 -2.65284 2.59991
H -4.58802 4.70033 1.9228
H -7.12407 3.88481 1.44253
H -9.16688 -0.92523 -0.06908
H -8.02817 -3.11571 -1.14105
H -2.8151 -4.2587 -2.42528
H -0.62661 -2.70578 -2.4842
H 0.9966 -1.79965 -1.518
H 4.58679 4.62187 -2.08539
H 7.13576 3.84863 -1.60057
H -5.44588 -3.77087 -1.78846
H -8.1948 1.49672 0.72837
H -2.2381 3.50002 1.81649
H 2.20119 3.44292 -1.75214
H -1.94223 0.9623 -1.42352
H 8.20559 1.50856 -0.7305
H 5.39261 -3.76943 1.74019
H 1.93426 1.03358 1.54578
H 3.29078 -0.39512 -1.44104
H -3.26808 -0.35259 1.45149
H -4.98548 -0.25708 -0.40324
H 4.99532 -0.22827 0.39763

SCF Done: E(RM06) = -1976.39833799 A.U. after 8 cycles

2i (Twisted-Hückel [34]T2α)
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.01466</td>
<td>2.25634</td>
<td>1.4235</td>
</tr>
<tr>
<td>C</td>
<td>-2.24368</td>
<td>1.85302</td>
<td>1.08578</td>
</tr>
<tr>
<td>C</td>
<td>-2.97036</td>
<td>3.00707</td>
<td>0.96327</td>
</tr>
<tr>
<td>C</td>
<td>-4.31849</td>
<td>3.05148</td>
<td>0.68533</td>
</tr>
<tr>
<td>C</td>
<td>-5.20638</td>
<td>1.98839</td>
<td>0.4398</td>
</tr>
<tr>
<td>N</td>
<td>-4.89884</td>
<td>0.67346</td>
<td>0.20486</td>
</tr>
<tr>
<td>C</td>
<td>-6.05795</td>
<td>-0.04671</td>
<td>0.08241</td>
</tr>
<tr>
<td>C</td>
<td>-6.16961</td>
<td>-1.42396</td>
<td>-0.19285</td>
</tr>
<tr>
<td>C</td>
<td>-5.31655</td>
<td>-3.69918</td>
<td>-0.83051</td>
</tr>
<tr>
<td>C</td>
<td>-4.08169</td>
<td>-4.13966</td>
<td>-1.16046</td>
</tr>
<tr>
<td>C</td>
<td>0.51182</td>
<td>-2.18913</td>
<td>-1.68617</td>
</tr>
<tr>
<td>C</td>
<td>1.03907</td>
<td>-0.94887</td>
<td>-1.67045</td>
</tr>
<tr>
<td>N</td>
<td>2.23388</td>
<td>1.82334</td>
<td>-1.10877</td>
</tr>
<tr>
<td>N</td>
<td>4.89451</td>
<td>0.68271</td>
<td>0.23811</td>
</tr>
<tr>
<td>C</td>
<td>5.32351</td>
<td>-3.66196</td>
<td>0.82126</td>
</tr>
<tr>
<td>C</td>
<td>4.09937</td>
<td>-4.10734</td>
<td>1.17023</td>
</tr>
<tr>
<td>C</td>
<td>-0.47227</td>
<td>-2.12273</td>
<td>1.70963</td>
</tr>
<tr>
<td>C</td>
<td>-1.02281</td>
<td>-0.89294</td>
<td>1.68031</td>
</tr>
<tr>
<td>C</td>
<td>-0.9164</td>
<td>3.70827</td>
<td>1.50358</td>
</tr>
<tr>
<td>C</td>
<td>-2.1518</td>
<td>4.18093</td>
<td>1.22148</td>
</tr>
<tr>
<td>C</td>
<td>-6.61526</td>
<td>2.10215</td>
<td>0.45355</td>
</tr>
<tr>
<td>C</td>
<td>-7.13988</td>
<td>0.84332</td>
<td>0.2597</td>
</tr>
<tr>
<td>H</td>
<td>-6.24905</td>
<td>-4.25077</td>
<td>-0.79374</td>
</tr>
<tr>
<td>H</td>
<td>-3.77689</td>
<td>-5.1358</td>
<td>-1.46231</td>
</tr>
<tr>
<td>H</td>
<td>1.03297</td>
<td>-3.14062</td>
<td>-1.69416</td>
</tr>
<tr>
<td>H</td>
<td>2.07612</td>
<td>-0.63805</td>
<td>-1.66527</td>
</tr>
<tr>
<td>H</td>
<td>-0.06827</td>
<td>4.21412</td>
<td>-1.67926</td>
</tr>
<tr>
<td>H</td>
<td>2.41295</td>
<td>5.16924</td>
<td>-1.13144</td>
</tr>
<tr>
<td>H</td>
<td>7.13131</td>
<td>3.06254</td>
<td>-0.68957</td>
</tr>
<tr>
<td>H</td>
<td>8.19097</td>
<td>0.61234</td>
<td>-0.30793</td>
</tr>
<tr>
<td>H</td>
<td>6.25559</td>
<td>-4.21226</td>
<td>0.7574</td>
</tr>
<tr>
<td>H</td>
<td>3.80074</td>
<td>-5.10493</td>
<td>1.47304</td>
</tr>
<tr>
<td>H</td>
<td>-0.97674</td>
<td>-3.08357</td>
<td>1.72474</td>
</tr>
<tr>
<td>H</td>
<td>-2.06538</td>
<td>-0.60299</td>
<td>1.66491</td>
</tr>
<tr>
<td>H</td>
<td>-0.01386</td>
<td>4.25903</td>
<td>1.74438</td>
</tr>
<tr>
<td>H</td>
<td>-2.49713</td>
<td>5.20826</td>
<td>1.18863</td>
</tr>
<tr>
<td>H</td>
<td>-7.14926</td>
<td>3.02867</td>
<td>0.62445</td>
</tr>
<tr>
<td>H</td>
<td>-8.18222</td>
<td>0.55174</td>
<td>0.22704</td>
</tr>
<tr>
<td>H</td>
<td>-4.78981</td>
<td>4.03407</td>
<td>0.70629</td>
</tr>
<tr>
<td>H</td>
<td>-7.1841</td>
<td>-1.8199</td>
<td>-0.16541</td>
</tr>
<tr>
<td>H</td>
<td>1.49846</td>
<td>-3.9885</td>
<td>1.73298</td>
</tr>
<tr>
<td>H</td>
<td>-1.41019</td>
<td>-4.05835</td>
<td>-1.50424</td>
</tr>
<tr>
<td>H</td>
<td>4.75923</td>
<td>4.02619</td>
<td>-0.80534</td>
</tr>
<tr>
<td>H</td>
<td>-1.09019</td>
<td>1.83658</td>
<td>-1.81375</td>
</tr>
<tr>
<td>H</td>
<td>1.07923</td>
<td>1.88597</td>
<td>1.71193</td>
</tr>
<tr>
<td>H</td>
<td>7.21319</td>
<td>-1.76794</td>
<td>0.15138</td>
</tr>
<tr>
<td>H</td>
<td>3.97004</td>
<td>0.27987</td>
<td>-0.06497</td>
</tr>
<tr>
<td>H</td>
<td>-3.96443</td>
<td>0.2809</td>
<td>0.06003</td>
</tr>
</tbody>
</table>

SCF Done: E(RM06) = -1976.38919013 A.U. after 10 cycles

3a (Hückel [38])70,10,25,30
SCF Done: E(RM06) = -1978.88937663 A.U. after 8 cycles

3b (Hückel [38] T0,R,E,F,H)

C 5.14502 3.93851 -0.11212
C 5.62977 5.24925 -0.27116
C 4.54694 6.10841 -0.36231
C 3.36775 5.34664 -0.2433
C 2.03961 5.82267 -0.2187
C 0.88698 5.0682 -0.21522
C 0.68298 3.66335 -0.41967
C -0.64373 3.38512 -0.28453
C -1.34579 4.60097 0.00671
C -2.69729 4.79 0.20582
C -3.55661 3.70287 0.50038
C -3.24645 2.48342 1.12877
C -4.37712 1.68514 1.11576
C -5.41319 2.3974 0.48788
C -6.72475 1.98149 0.16531
C -7.08082 0.64962 0.05504
N -6.16209 -0.35884 0.13894
C -6.82834 -1.49545 -0.0511
C -6.19578 -2.76789 -0.11758
C -4.82849 -2.94132 -0.12546
C -3.78642 -1.94665 -0.107
C -2.58519 -2.57383 -0.13869
C -2.79638 -3.99526 -0.18925
C -1.85746 -4.99666 -0.21395
C -0.47449 -4.74086 -0.42927
C 0.16161 -3.70592 1.12472
C 1.54001 -3.86647 -0.9903
C 1.77475 -5.01654 -0.22188
C 2.98767 -5.61174 0.21133
C 4.18251 -4.94488 0.32292
C 5.47594 -5.47766 0.6462
C 6.36774 -4.45117 0.69101
C 5.68002 -3.22087 0.41054
C 6.22366 -1.96207 0.41519
C 5.61021 -0.71061 0.14236
N 6.30187 0.42059 0.3128
C 5.4484 1.44121 -0.01192
C 5.8824 2.7564 0.0347
N 3.75998 4.03198 -0.12245
N -0.38152 5.59664 -0.01525
N -4.8985 3.65059 0.18907
C -8.40616 0.10545 -0.19492
C -8.254 -1.24296 -0.23991
N -4.17333 -4.16338 -0.16057
SCF Done: E(RM06) = -1978.83305137 A.U. after 7 cycles

3c (Hückel [38])

C 6.21226 2.04882 -0.02097
C 6.328 3.38943 0.4736
C 5.07348 3.85707 0.73177
C 4.12238 2.83837 0.38625
C 2.74872 2.95737 0.41408
C 1.79067 2.03796 -0.05603
C 1.90154 0.8132 -0.74702
C 0.62592 0.30517 -0.93085
C -0.30058 1.20967 -0.38618
C -1.70098 1.07317 -0.39846
C -2.70566 2.01713 -0.32005
C -2.73556 3.45319 -0.30316
C -4.03564 3.85796 -0.45022
C -4.87008 2.69301 -0.55445
C -6.22053 2.56553 -0.86676
C -6.83168 1.30064 -1.0344
N -6.20301 0.17746 -0.65292
C -6.92536 -0.88901 -1.12042
C -6.45824 -2.18846 -0.96275
C -5.30716 -2.48422 -0.19136
C -4.38574 -3.55443 -0.2043
C -3.31451 -3.21703 0.62149
C -3.59333 -1.95646 1.1983
C -2.95605 -1.08577 2.11466
C -1.63162 -0.92338 2.42578
C -1.1138 0.04355 3.35123
C 0.24305 0.01981 3.28826
C 0.63885 -0.96099 2.32095
C 1.91683 -1.18473 1.88269
C 2.33828 -2.08628 0.88144
C 1.7342 -3.21728 0.28073
C 2.62068 -3.72625 -0.65905
C 3.76631 -2.90463 -0.66797
C 4.93802 -2.95063 -1.44244
C 5.91351 -1.96625 -1.43672
N 5.76943 -0.75435 -0.80026
C 6.94964 -0.11816 -0.94407
C 7.19402 1.19173 -0.47519
N 4.86536 1.75524 -0.02625
N 0.43321 2.26433 0.11176
N -4.02348 1.6242 -0.40545
C -8.06374 0.9627 -1.72572
C -8.10388 -0.39768 -1.80486
N -4.80701 -1.57468 0.70464
N -0.53252 -1.56836 1.87663
N 3.56 -1.94317 0.29087
C 7.2312 -2.07159 -2.01917
C 7.8923 -0.93286 -1.68113
H 4.24811 -1.20352 0.42893
H 4.55839 0.85164 -0.3722
H -4.38661 0.68496 -0.57496
H -5.2251 -0.64736 0.76901
H 7.60231 -2.92282 -2.57916
H 8.9091 -0.64791 -1.92747
H 2.4804 -4.59836 -1.28583
H 0.7869 -3.65359 0.57507
H 7.26897 3.90933 0.60454
H 4.7954 4.83598 1.10398
H -1.86218 4.093 -0.2571
H -4.39817 4.87684 -0.51566
H -8.77273 1.67067 -2.14062
H -8.8641 -1.01091 -2.27603
H -2.45439 -3.83486 0.85289
H -4.49433 -4.46124 -0.78668
H 2.81403 0.36126 -1.11723
H 0.35818 -0.61196 -1.44305
H 5.09228 -3.83012 -2.06456
H 8.21156 1.5735 -0.51618
H 2.37302 3.89622 0.82048
H 2.67508 -0.51003 2.28055
H 0.94841 0.6243 3.84603
H -1.74271 0.67055 3.97172
H -6.94725 -3.00189 -1.4941
H -3.61337 -0.34772 2.57528
H -6.78335 3.47038 -1.0814
H -2.03864 0.05647 -0.60983
H 0.05607 2.96508 0.73225
H -0.58368 -2.03911 0.9828

SCF Done: E(RM06) = -1978.88616480 A.U. after 7 cycles
3d (Hückel [38] \(\theta^{20,25,89} \))

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.47985</td>
<td>1.95154</td>
<td>-1.23663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.73836</td>
<td>3.32463</td>
<td>-0.91509</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.65994</td>
<td>3.81649</td>
<td>-0.24919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.64842</td>
<td>2.79553</td>
<td>-0.18269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.37375</td>
<td>3.02769</td>
<td>0.28072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.14369</td>
<td>2.33416</td>
<td>0.16821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.69903</td>
<td>1.08861</td>
<td>-0.31626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.69899</td>
<td>1.08864</td>
<td>-0.31644</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.14374</td>
<td>2.33415</td>
<td>0.16803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.37383</td>
<td>3.02767</td>
<td>0.28039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-3.64846</td>
<td>2.79556</td>
<td>-0.18316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4.66</td>
<td>3.8165</td>
<td>-0.2497</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-5.73836</td>
<td>3.32465</td>
<td>-0.91574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-5.47984</td>
<td>1.95155</td>
<td>-1.23721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.30968</td>
<td>1.06431</td>
<td>-1.8894</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.06571</td>
<td>-0.32448</td>
<td>-1.98027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-5.09497</td>
<td>-0.92015</td>
<td>-1.27269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-5.18003</td>
<td>-2.26333</td>
<td>-1.5547</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4.41764</td>
<td>-3.20642</td>
<td>-0.89128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-3.584</td>
<td>-2.90143</td>
<td>0.20394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.61718</td>
<td>-3.67161</td>
<td>0.87268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.00674</td>
<td>-2.85959</td>
<td>1.82278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.62212</td>
<td>-1.58691</td>
<td>1.76901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.37733</td>
<td>-0.38286</td>
<td>2.49104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.13552</td>
<td>-0.03717</td>
<td>2.95117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.68054</td>
<td>1.17839</td>
<td>3.57025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.68164</td>
<td>1.17806</td>
<td>3.5703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.13604</td>
<td>-0.03772</td>
<td>2.95122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.37771</td>
<td>-0.38392</td>
<td>2.49108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.62212</td>
<td>-1.58777</td>
<td>1.76869</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.00616</td>
<td>-2.86024</td>
<td>1.82153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.61654</td>
<td>-3.672</td>
<td>0.8712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.58386</td>
<td>-2.90185</td>
<td>0.20314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.41738</td>
<td>-3.20656</td>
<td>-0.89224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.17996</td>
<td>-2.26335</td>
<td>-1.55525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5.0951</td>
<td>-0.92025</td>
<td>-1.27258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.06572</td>
<td>-0.32437</td>
<td>-1.98012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.30973</td>
<td>1.0644</td>
<td>-1.8892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4.21071</td>
<td>1.67358</td>
<td>-0.75629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-0.00005</td>
<td>3.02781</td>
<td>0.50021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-4.2107</td>
<td>1.67363</td>
<td>-0.75684</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.79986</td>
<td>-1.29197</td>
<td>-2.77141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.22477</td>
<td>-2.50011</td>
<td>-2.52591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-3.57567</td>
<td>-1.65999</td>
<td>0.79917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.0001</td>
<td>-0.78758</td>
<td>2.70175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3.57589</td>
<td>-1.66075</td>
<td>0.79903</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.22446</td>
<td>-2.49976</td>
<td>-2.52678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.79966</td>
<td>-1.29157</td>
<td>-2.77179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.17166</td>
<td>-0.9201</td>
<td>0.42637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.79825</td>
<td>0.7597</td>
<td>-0.90936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-3.7982</td>
<td>0.75979</td>
<td>-0.91003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.17138</td>
<td>-0.9194</td>
<td>0.42637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.50121</td>
<td>-3.46728</td>
<td>-2.93073</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.62834</td>
<td>-1.06599</td>
<td>-3.43371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.39611</td>
<td>-4.71106</td>
<td>0.65949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.26234</td>
<td>-3.15939</td>
<td>2.5497</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.65967</td>
<td>3.83813</td>
<td>-1.16099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.52073</td>
<td>4.81847</td>
<td>0.13965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCF Done: E(RM06) = -1978.87909867 A.U. after 8 cycles

3e (Möbius [38] Tj R,E,H)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-7.077</td>
<td>-0.4918</td>
<td>0.1762</td>
</tr>
<tr>
<td>C</td>
<td>-8.3461</td>
<td>0.1907</td>
<td>0.3138</td>
</tr>
<tr>
<td>C</td>
<td>-8.1884</td>
<td>1.4846</td>
<td>-0.0543</td>
</tr>
<tr>
<td>C</td>
<td>-6.8079</td>
<td>1.6953</td>
<td>-0.4285</td>
</tr>
<tr>
<td>C</td>
<td>-6.1543</td>
<td>2.8671</td>
<td>-0.6662</td>
</tr>
<tr>
<td>C</td>
<td>-4.7458</td>
<td>2.94</td>
<td>-0.9272</td>
</tr>
<tr>
<td>C</td>
<td>-3.874</td>
<td>2.0369</td>
<td>-1.5344</td>
</tr>
<tr>
<td>C</td>
<td>-2.5748</td>
<td>2.5636</td>
<td>-1.4567</td>
</tr>
<tr>
<td>C</td>
<td>-2.6393</td>
<td>3.7803</td>
<td>-0.7842</td>
</tr>
<tr>
<td>C</td>
<td>-1.6201</td>
<td>4.697</td>
<td>-0.3727</td>
</tr>
<tr>
<td>C</td>
<td>-0.3259</td>
<td>4.3433</td>
<td>-0.1254</td>
</tr>
<tr>
<td>C</td>
<td>0.2789</td>
<td>3.0322</td>
<td>-0.0647</td>
</tr>
<tr>
<td>C</td>
<td>1.6046</td>
<td>3.1645</td>
<td>0.1747</td>
</tr>
<tr>
<td>C</td>
<td>1.9151</td>
<td>4.572</td>
<td>0.2923</td>
</tr>
<tr>
<td>C</td>
<td>3.1236</td>
<td>5.1863</td>
<td>0.4895</td>
</tr>
<tr>
<td>C</td>
<td>4.3829</td>
<td>4.5155</td>
<td>0.545</td>
</tr>
<tr>
<td>N</td>
<td>4.5466</td>
<td>3.1983</td>
<td>0.5404</td>
</tr>
<tr>
<td>C</td>
<td>5.9073</td>
<td>2.9954</td>
<td>0.4476</td>
</tr>
<tr>
<td>C</td>
<td>6.4892</td>
<td>1.7621</td>
<td>0.3121</td>
</tr>
<tr>
<td>C</td>
<td>5.7999</td>
<td>0.5211</td>
<td>0.3739</td>
</tr>
<tr>
<td>C</td>
<td>4.607</td>
<td>0.1565</td>
<td>1.0002</td>
</tr>
<tr>
<td>C</td>
<td>4.378</td>
<td>-1.1974</td>
<td>0.7435</td>
</tr>
<tr>
<td>C</td>
<td>5.415</td>
<td>-1.6718</td>
<td>-0.0757</td>
</tr>
<tr>
<td>C</td>
<td>5.6134</td>
<td>-2.8871</td>
<td>-0.793</td>
</tr>
<tr>
<td>C</td>
<td>4.6777</td>
<td>-3.8554</td>
<td>-1.0187</td>
</tr>
<tr>
<td>C</td>
<td>4.7747</td>
<td>-4.9752</td>
<td>-1.9225</td>
</tr>
<tr>
<td>C</td>
<td>3.5617</td>
<td>-5.5765</td>
<td>-2.0091</td>
</tr>
<tr>
<td>C</td>
<td>2.6506</td>
<td>-4.9023</td>
<td>-1.1168</td>
</tr>
<tr>
<td>C</td>
<td>1.3313</td>
<td>-5.152</td>
<td>-0.8795</td>
</tr>
<tr>
<td>C</td>
<td>0.6002</td>
<td>-4.5839</td>
<td>0.2152</td>
</tr>
<tr>
<td>C</td>
<td>1.0359</td>
<td>-4.2381</td>
<td>1.5013</td>
</tr>
<tr>
<td>C</td>
<td>-0.092</td>
<td>-3.9471</td>
<td>2.2737</td>
</tr>
<tr>
<td>C</td>
<td>-1.2168</td>
<td>-4.0458</td>
<td>1.4562</td>
</tr>
<tr>
<td>C</td>
<td>-2.57</td>
<td>-3.7452</td>
<td>1.77</td>
</tr>
<tr>
<td>C</td>
<td>-3.5308</td>
<td>-3.2462</td>
<td>0.932</td>
</tr>
</tbody>
</table>

61
N -4.8162 -2.9991 1.3946
C -5.3941 -2.2732 0.4562
C -6.7261 -1.7376 0.5952
N -6.2082 0.4436 -0.3806
N -3.9765 4.009 -0.5193
N 0.7075 5.2334 0.1455
C 5.6624 5.2226 0.5079
C 6.6154 4.2655 0.4269
N 6.2904 -0.6212 -0.2288
N 3.3927 -3.9026 -0.4978
N -0.7633 -4.4291 0.2079
C -3.3512 -2.6873 -0.3986
C -4.5127 -2.0524 -0.6901
H -1.6796 2.1473 -1.8999
H -5.204 0.3633 -0.2709
H 0.625 6.2338 0.0563
H 4.0148 0.8326 1.6018
H 7.6914 4.3859 0.3629
H 5.683 -5.2425 -2.4495
H -4.7694 -1.5108 -1.5949
H -8.9385 2.2666 -0.0585
H 5.7872 6.3004 0.5069
H 2.0646 -4.2916 1.8367
H -4.1776 1.1388 -2.059
H 2.3618 2.3996 0.2839
H 3.2908 -6.4365 -2.6094
H 3.5778 -1.7898 1.1711
H -0.2809 2.1108 -0.157
H -2.4414 -2.6987 -0.9883
H -0.1158 -3.6511 3.3152
H -9.2483 -0.2894 0.6733
H -6.7199 3.7915 -0.5632
H -1.9032 5.7442 -0.2499
H 3.1448 6.2751 0.5423
H 7.5596 1.7315 0.1007
H 6.5611 -3.0074 -1.3163
H 0.828 -5.8682 -1.5268
H -2.8618 -3.8592 2.8139
H -7.4449 -2.3033 1.1829
H 7.0591 -0.6246 -0.883
H -1.3694 -4.6747 -0.5614
H -4.3107 4.7338 0.0985
H 2.9392 -3.0908 -0.1012

SCF Done: E(RM06) = -1978.82570394 A.U. after 6 cycles

3f (Möbius [38] T^{B,C})

C 7.4926 0.06196 -0.36018
C 8.37423 0.81902 -1.15329
C 7.64004 1.83957 -1.74351
C 6.29898 1.71727 -1.31775
C 5.20034 2.57377 -1.60917
C 3.88979 2.33952 -1.28645
C 3.2583 1.15891 -0.74412
C 1.94036 1.40324 -0.56365
C 1.65447 2.75646 -0.97583
C 0.4798 3.43983 -0.87762
C -0.75384 2.81721 -0.48975
SCF Done: E(RM06) = -1978.87103986 A.U. after 7 cycles

3g (Twisted-Hückel [38] T20.7)

C -6.0908 2.14861 0.51474
C -6.02851 3.54697 0.77235
C -4.72216 3.87394 1.03691
C -3.93926 2.68213 0.98694
C -2.57927 2.56065 1.26103
C -1.83669 1.38848 1.42465
C -2.20985 0.02044 1.55517
C -1.07023 -0.73342 1.71031
C 0.0564 0.12874 1.65673
C 1.43173 -0.09026 1.64089
C 2.0957 -1.30343 1.47566
C 1.65044 -2.6572 1.38353
C 2.74729 -3.45725 1.16242
C 3.89572 -2.62414 1.06876
C 5.22146 -2.93423 0.7695
C 6.19403 -1.97031 0.48571
N 5.89813 -0.6536 0.29641
C 7.08439 -0.02466 0.08967
C 7.18068 1.34007 -0.21249
C 6.09083 2.14861 -0.51487
C 6.02854 3.54698 -0.77244
C 4.72218 3.87398 -1.03691
C 3.93926 2.68219 -0.98689
C 2.57925 2.56073 -1.26088
C 1.83667 1.38855 -1.42442
C 2.20985 0.02051 -1.55484
C 1.07022 -0.73336 -1.71002
C -0.05642 0.1288 -1.65564
C -1.43175 -0.09021 -1.64078
C -2.0957 -1.30338 -1.47559
C -1.65042 -2.65714 -1.38344
C -2.74727 -3.45721 -1.16239
C -3.89572 -2.62413 -1.06879
C -5.22147 -2.93423 -0.79691
C -6.19404 -1.97031 -0.48587
N -5.89812 -0.65361 -0.29657
C -7.08437 -0.02464 -0.08989
C -7.18065 1.34009 0.21227
N -4.80311 1.67249 0.64892
N -0.46127 1.40715 1.54626
N 3.45477 -1.3444 1.29308
C 7.6185 -2.18778 0.38148
C 8.17861 -0.96549 0.16775
N 4.80313 1.67251 -0.64899
N 0.46124 1.40721 -1.54606
N -3.45478 -1.34437 -1.29307
C -7.61853 -2.18775 -0.38173
C -8.17862 -0.96544 -0.16803
H 0.62448 -2.98719 1.47731
H 2.75933 -4.53393 1.04358
H 8.11762 -3.14445 0.48913
H 9.22766 -0.72177 0.04113
H 6.88356 4.21133 -0.74865
H 4.32238 4.85017 -1.28408
H 3.22626 -0.35614 -1.58114
H 1.03674 -1.80445 -1.8556
H -0.62445 -2.98711 -1.47716
H -2.7593 -4.5339 -1.04356
H -8.11765 -3.1444 -0.4894
H -9.22767 -0.7217 -0.04148
H -6.88351 4.21133 0.74852
H -4.32236 4.85012 1.28413
H 4.10335 -0.56392 1.21199
H 4.62073 0.6861 -0.47924
H -4.10337 -0.5639 -1.21197
H -4.62072 0.68608 0.47911
H -5.50496 -3.98442 -0.75781
H -8.16667 1.79843 0.24638
H -2.04856 3.50354 1.39677
H 2.06469 0.8003 1.63004
H 5.50495 -3.98441 0.75768
H 8.16671 1.79839 -0.24664
H -2.04742 0.80035 -1.62997
H 2.04854 3.50362 -1.3966
H -3.22628 -0.35622 1.58153
H -1.03674 -1.80451 1.85593
H 0.11262 2.22109 1.38185
H -0.11265 2.22116 -1.38169

SCF Done: E(RM06) = -1978.90164996 A.U. after 17 cycles

3h (Twisted-Hückel [38]T2C,C)

C -7.16579 -0.06458 -0.01355
C -8.26351 -0.90094 -0.21603
C -7.71112 -2.15396 -0.62952
C -6.28886 -1.92261 -0.72268
C -5.33994 -2.83314 -1.19807
C -4.01899 -2.50196 -1.4841
C -2.91742 -3.32569 -1.84435
C -1.80515 -2.5276 -1.97013
C -2.19279 -1.17706 -1.71752
C -1.48186 0.02213 -1.71333
C -0.09829 0.17296 -1.67678
C 0.97137 -0.75485 -1.5612
C 2.15302 -0.05835 -1.46687
C 1.86593 1.3358 -1.53538
C 2.6707 2.47624 -1.53093
C 4.04237 2.57304 -1.31379
N 4.89022 1.58252 -0.88976
C 6.19291 2.03634 -0.84386
C 7.27139 1.24567 -0.47008
C 7.1658 -0.06458 0.01354
C 8.26351 -0.90095 0.21602
C 7.71112 -2.15396 0.62952
C 6.28886 -1.9226 0.72267
C 5.33994 -2.83313 1.19807
C 4.01899 -2.50193 1.48411
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.91742</td>
<td>-3.32566</td>
<td>1.84438</td>
</tr>
<tr>
<td>C</td>
<td>1.80515</td>
<td>-2.52756</td>
<td>1.97016</td>
</tr>
<tr>
<td>C</td>
<td>2.19279</td>
<td>-1.17703</td>
<td>1.71752</td>
</tr>
<tr>
<td>C</td>
<td>1.48187</td>
<td>0.02216</td>
<td>1.71332</td>
</tr>
<tr>
<td>C</td>
<td>0.09829</td>
<td>0.173</td>
<td>1.6768</td>
</tr>
<tr>
<td>C</td>
<td>-0.97137</td>
<td>-0.75482</td>
<td>1.56126</td>
</tr>
<tr>
<td>C</td>
<td>-2.15302</td>
<td>-0.05832</td>
<td>1.46693</td>
</tr>
<tr>
<td>C</td>
<td>-1.86593</td>
<td>1.33583</td>
<td>1.5354</td>
</tr>
<tr>
<td>C</td>
<td>-2.6707</td>
<td>2.47627</td>
<td>1.53092</td>
</tr>
<tr>
<td>C</td>
<td>-4.04237</td>
<td>2.57306</td>
<td>1.31377</td>
</tr>
<tr>
<td>N</td>
<td>-4.89021</td>
<td>1.58253</td>
<td>0.88976</td>
</tr>
<tr>
<td>C</td>
<td>-6.19291</td>
<td>2.03635</td>
<td>0.84384</td>
</tr>
<tr>
<td>C</td>
<td>-7.27138</td>
<td>1.24567</td>
<td>0.47006</td>
</tr>
<tr>
<td>N</td>
<td>-5.98143</td>
<td>-0.65361</td>
<td>-0.32935</td>
</tr>
<tr>
<td>N</td>
<td>0.49565</td>
<td>1.4205</td>
<td>-1.67645</td>
</tr>
<tr>
<td>N</td>
<td>-3.53599</td>
<td>-1.21675</td>
<td>-1.44339</td>
</tr>
<tr>
<td>C</td>
<td>4.8534</td>
<td>3.72866</td>
<td>-1.5202</td>
</tr>
<tr>
<td>C</td>
<td>6.1583</td>
<td>3.39714</td>
<td>-1.25695</td>
</tr>
<tr>
<td>N</td>
<td>5.98143</td>
<td>-0.6536</td>
<td>0.32934</td>
</tr>
<tr>
<td>N</td>
<td>3.53599</td>
<td>-1.21672</td>
<td>1.44338</td>
</tr>
<tr>
<td>N</td>
<td>-0.49565</td>
<td>1.42053</td>
<td>1.67646</td>
</tr>
<tr>
<td>C</td>
<td>-4.85341</td>
<td>3.72869</td>
<td>1.52016</td>
</tr>
<tr>
<td>C</td>
<td>-6.1583</td>
<td>3.39716</td>
<td>1.2569</td>
</tr>
<tr>
<td>H</td>
<td>0.85748</td>
<td>-1.82819</td>
<td>-1.48224</td>
</tr>
<tr>
<td>H</td>
<td>-9.30937</td>
<td>-0.75671</td>
<td>-0.03758</td>
</tr>
<tr>
<td>H</td>
<td>-8.21343</td>
<td>-3.08159</td>
<td>-0.88075</td>
</tr>
<tr>
<td>H</td>
<td>-2.97468</td>
<td>-4.39794</td>
<td>-1.98743</td>
</tr>
<tr>
<td>H</td>
<td>-0.81567</td>
<td>-2.84194</td>
<td>-2.27445</td>
</tr>
<tr>
<td>H</td>
<td>4.46882</td>
<td>4.68237</td>
<td>-1.86136</td>
</tr>
<tr>
<td>H</td>
<td>7.03025</td>
<td>4.03537</td>
<td>-1.32972</td>
</tr>
<tr>
<td>H</td>
<td>9.30938</td>
<td>-0.75672</td>
<td>0.03756</td>
</tr>
<tr>
<td>H</td>
<td>8.21342</td>
<td>-3.08159</td>
<td>0.88076</td>
</tr>
<tr>
<td>H</td>
<td>2.97468</td>
<td>-4.3979</td>
<td>1.98747</td>
</tr>
<tr>
<td>H</td>
<td>0.81567</td>
<td>-2.84189</td>
<td>2.27449</td>
</tr>
<tr>
<td>H</td>
<td>-0.85748</td>
<td>-1.82817</td>
<td>1.48232</td>
</tr>
<tr>
<td>H</td>
<td>-4.46883</td>
<td>4.6824</td>
<td>1.8613</td>
</tr>
<tr>
<td>H</td>
<td>-7.03025</td>
<td>4.03539</td>
<td>1.32966</td>
</tr>
<tr>
<td>H</td>
<td>-0.01792</td>
<td>2.28687</td>
<td>-1.73089</td>
</tr>
<tr>
<td>H</td>
<td>0.01793</td>
<td>2.28691</td>
<td>1.73084</td>
</tr>
<tr>
<td>H</td>
<td>5.64839</td>
<td>-3.86184</td>
<td>1.372</td>
</tr>
<tr>
<td>H</td>
<td>8.26422</td>
<td>1.67699</td>
<td>-0.57994</td>
</tr>
<tr>
<td>H</td>
<td>2.1784</td>
<td>3.4218</td>
<td>-1.75998</td>
</tr>
<tr>
<td>H</td>
<td>-2.1784</td>
<td>3.42183</td>
<td>1.75994</td>
</tr>
<tr>
<td>H</td>
<td>2.07769</td>
<td>0.93393</td>
<td>1.62785</td>
</tr>
<tr>
<td>H</td>
<td>-8.26422</td>
<td>1.67699</td>
<td>0.57991</td>
</tr>
<tr>
<td>H</td>
<td>-5.6484</td>
<td>-3.86185</td>
<td>-1.37198</td>
</tr>
<tr>
<td>H</td>
<td>-2.07769</td>
<td>0.9339</td>
<td>-1.62789</td>
</tr>
<tr>
<td>H</td>
<td>-3.13914</td>
<td>-0.49863</td>
<td>1.37152</td>
</tr>
<tr>
<td>H</td>
<td>3.13914</td>
<td>-0.49865</td>
<td>-1.37144</td>
</tr>
<tr>
<td>H</td>
<td>-4.154</td>
<td>-0.45104</td>
<td>-1.18244</td>
</tr>
<tr>
<td>H</td>
<td>4.154</td>
<td>-0.45102</td>
<td>1.1824</td>
</tr>
<tr>
<td>H</td>
<td>-4.68958</td>
<td>0.62451</td>
<td>0.61666</td>
</tr>
<tr>
<td>H</td>
<td>4.68958</td>
<td>0.6245</td>
<td>-0.61668</td>
</tr>
</tbody>
</table>

SCF Done: E(RM06) = -1978.90146269 A.U. after 16 cycles

3i (Twisted-Hückel [38] \(T_{2_{20}} \))

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.91939</td>
<td>-2.40036</td>
<td>0.43763</td>
</tr>
<tr>
<td>C</td>
<td>4.95221</td>
<td>-3.79853</td>
<td>0.70127</td>
</tr>
</tbody>
</table>
C 3.69776 -4.1902 1.08317
C 2.84297 -3.04853 1.0837
C 1.50782 -3.036 1.45608
C 0.64482 -1.94944 1.59334
C -0.76086 -1.9993 1.76835
C -1.25333 -0.71615 1.76846
C -0.15873 0.17979 1.61858
C -0.09651 1.56445 1.52116
C -1.1708 2.42125 1.28926
C -1.14721 3.84167 1.24572
C -2.4053 4.28414 0.90334
C -3.23252 3.14766 0.71724
C -4.58264 3.06276 0.40317
C -5.32116 1.89046 0.23697
N -4.82716 0.61176 0.17223
C -5.93432 -0.18059 0.09757
C -5.96711 -1.56918 -0.08443
C -4.91935 -2.40048 -0.43782
C -4.95218 -3.79868 -0.7013
C -3.69769 -4.19044 -1.08302
C -2.84287 -3.04881 -1.08356
C -1.50769 -3.03631 -1.45579
C -0.64471 -1.94973 -1.59295
C 0.76099 -1.9995 -1.76788
C 1.25336 -0.71631 -1.76801
C 0.15869 0.17955 -1.61809
C 0.09638 1.5642 -1.52065
C 1.17064 2.42108 -1.28895
C 1.14697 3.84149 -1.24538
C 2.40511 4.28404 -0.90329
C 3.23244 3.1476 -0.71736
C 4.58262 3.06277 -0.40355
C 5.32118 1.89049 -0.23746
N 4.82718 0.6118 -0.17256
C 5.93435 -0.18055 -0.09807
C 5.96714 -1.56913 0.08402
N 3.62648 -1.98394 0.67678
N -2.44817 2.04223 0.96081
N 0.97413 -0.61377 1.53166
C -6.76392 1.89889 0.18378
N -0.97411 -0.61409 -1.53114
C -7.14941 0.60027 0.13951
N -3.6264 -1.98413 -0.67691
N 2.44812 2.04213 -0.96083
C 6.76396 1.89891 -0.18455
C 7.14944 0.60029 -0.14025
H 5.84235 -4.40999 0.61919
H 3.37306 -5.18038 1.37949
H -1.32812 -2.91896 1.85025
H -2.28919 -0.43291 1.91736
H -0.26668 4.43478 1.46185
H -2.73956 5.30839 0.79315
H -7.38121 2.79003 0.21161
H -8.15275 0.19083 0.09964
H -5.84234 -4.41011 -0.61925
H -3.37299 -5.18067 -1.3792
H 1.3283 -2.91912 -1.84978
H 2.2892 -0.43297 -1.91688
H 0.26635 4.43455 -1.46129
H 2.73934 5.3083 -0.79316
<table>
<thead>
<tr>
<th>H</th>
<th>7.38124</th>
<th>2.79005</th>
<th>-0.21254</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>8.15278</td>
<td>0.19085</td>
<td>-0.10053</td>
</tr>
<tr>
<td>H</td>
<td>3.3498</td>
<td>-1.04532</td>
<td>0.41272</td>
</tr>
<tr>
<td>H</td>
<td>-2.83334</td>
<td>1.11174</td>
<td>0.83093</td>
</tr>
<tr>
<td>H</td>
<td>-3.34971</td>
<td>-1.04547</td>
<td>-0.413</td>
</tr>
<tr>
<td>H</td>
<td>2.83339</td>
<td>1.11166</td>
<td>-0.8311</td>
</tr>
<tr>
<td>H</td>
<td>5.12519</td>
<td>4.00362</td>
<td>-0.3317</td>
</tr>
<tr>
<td>H</td>
<td>6.94394</td>
<td>-2.04506</td>
<td>0.01651</td>
</tr>
<tr>
<td>H</td>
<td>-1.06365</td>
<td>-4.01152</td>
<td>-1.64491</td>
</tr>
<tr>
<td>H</td>
<td>1.06381</td>
<td>-4.0112</td>
<td>1.64525</td>
</tr>
<tr>
<td>H</td>
<td>-5.12523</td>
<td>4.00359</td>
<td>0.33121</td>
</tr>
<tr>
<td>H</td>
<td>0.88376</td>
<td>2.03977</td>
<td>1.57132</td>
</tr>
<tr>
<td>H</td>
<td>-0.88394</td>
<td>2.03945</td>
<td>-1.57064</td>
</tr>
<tr>
<td>H</td>
<td>-6.94393</td>
<td>-2.04509</td>
<td>-0.01701</td>
</tr>
<tr>
<td>H</td>
<td>1.91073</td>
<td>-0.23679</td>
<td>1.55342</td>
</tr>
<tr>
<td>H</td>
<td>-1.91074</td>
<td>-0.23718</td>
<td>-1.55284</td>
</tr>
</tbody>
</table>

SCF Done: \(E(\text{RM06}) = -1978.91268275 \) A.U. after 19 cycles

4a (Hückel [36] \(\text{C}^2 \text{T}^{0,10,25,30} \))

<table>
<thead>
<tr>
<th>C</th>
<th>7.62914</th>
<th>-1.07413</th>
<th>-0.08311</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>9.01444</td>
<td>-0.67757</td>
<td>-0.06409</td>
</tr>
<tr>
<td>C</td>
<td>9.01444</td>
<td>0.67755</td>
<td>0.06411</td>
</tr>
<tr>
<td>C</td>
<td>7.62915</td>
<td>1.07412</td>
<td>0.08312</td>
</tr>
<tr>
<td>C</td>
<td>7.15441</td>
<td>2.39465</td>
<td>0.154</td>
</tr>
<tr>
<td>C</td>
<td>5.82998</td>
<td>2.77928</td>
<td>0.02456</td>
</tr>
<tr>
<td>N</td>
<td>4.80553</td>
<td>1.90648</td>
<td>-0.29083</td>
</tr>
<tr>
<td>C</td>
<td>3.61289</td>
<td>2.55032</td>
<td>-0.29509</td>
</tr>
<tr>
<td>C</td>
<td>2.41058</td>
<td>1.85462</td>
<td>-0.60214</td>
</tr>
<tr>
<td>C</td>
<td>1.14199</td>
<td>2.28497</td>
<td>-0.32185</td>
</tr>
<tr>
<td>C</td>
<td>0.67646</td>
<td>3.40873</td>
<td>0.46111</td>
</tr>
<tr>
<td>C</td>
<td>-0.67644</td>
<td>3.40873</td>
<td>0.46112</td>
</tr>
<tr>
<td>C</td>
<td>-1.14198</td>
<td>2.28497</td>
<td>-0.32184</td>
</tr>
<tr>
<td>C</td>
<td>-2.41057</td>
<td>1.85461</td>
<td>-0.60212</td>
</tr>
<tr>
<td>C</td>
<td>-3.61288</td>
<td>2.55031</td>
<td>-0.29508</td>
</tr>
<tr>
<td>N</td>
<td>-4.80552</td>
<td>1.90647</td>
<td>-0.29082</td>
</tr>
<tr>
<td>C</td>
<td>-5.82996</td>
<td>2.77928</td>
<td>0.02456</td>
</tr>
<tr>
<td>C</td>
<td>-7.1544</td>
<td>2.39466</td>
<td>0.154</td>
</tr>
<tr>
<td>C</td>
<td>-7.62914</td>
<td>1.07413</td>
<td>0.08311</td>
</tr>
<tr>
<td>C</td>
<td>-9.01444</td>
<td>0.67757</td>
<td>0.06409</td>
</tr>
<tr>
<td>C</td>
<td>-9.01445</td>
<td>-0.67755</td>
<td>-0.06411</td>
</tr>
<tr>
<td>C</td>
<td>-7.62915</td>
<td>-1.07412</td>
<td>-0.08312</td>
</tr>
<tr>
<td>C</td>
<td>-7.15441</td>
<td>-2.39465</td>
<td>-0.15401</td>
</tr>
<tr>
<td>C</td>
<td>-5.82998</td>
<td>-2.77927</td>
<td>-0.02456</td>
</tr>
<tr>
<td>N</td>
<td>-4.80553</td>
<td>-1.90647</td>
<td>0.29083</td>
</tr>
<tr>
<td>C</td>
<td>-3.61289</td>
<td>-2.55032</td>
<td>0.29509</td>
</tr>
<tr>
<td>C</td>
<td>-2.41058</td>
<td>-1.85462</td>
<td>0.60213</td>
</tr>
<tr>
<td>C</td>
<td>-1.14199</td>
<td>-2.28497</td>
<td>0.32185</td>
</tr>
<tr>
<td>C</td>
<td>-0.67646</td>
<td>-3.40873</td>
<td>-0.46112</td>
</tr>
<tr>
<td>C</td>
<td>0.67645</td>
<td>-3.40873</td>
<td>-0.46112</td>
</tr>
<tr>
<td>C</td>
<td>1.14198</td>
<td>-2.28497</td>
<td>0.32185</td>
</tr>
<tr>
<td>C</td>
<td>2.41057</td>
<td>-1.85461</td>
<td>0.60213</td>
</tr>
<tr>
<td>C</td>
<td>3.61288</td>
<td>-2.55031</td>
<td>0.29508</td>
</tr>
<tr>
<td>N</td>
<td>4.80552</td>
<td>-1.90648</td>
<td>0.29083</td>
</tr>
<tr>
<td>C</td>
<td>5.82996</td>
<td>-2.77928</td>
<td>-0.02456</td>
</tr>
<tr>
<td>C</td>
<td>7.1544</td>
<td>-2.39466</td>
<td>-0.154</td>
</tr>
<tr>
<td>N</td>
<td>6.80106</td>
<td>-0.00001</td>
<td>0.</td>
</tr>
<tr>
<td>C</td>
<td>5.23045</td>
<td>4.05323</td>
<td>0.19933</td>
</tr>
<tr>
<td>C</td>
<td>3.87399</td>
<td>3.91427</td>
<td>0.01533</td>
</tr>
</tbody>
</table>

68
N 0. 1.61398 -0.72491
C -3.87397 3.91427 0.01534
C -5.23043 4.05323 0.19934
N -6.80106 0.00001 0.
C -5.23045 -4.05323 -0.19933
C -3.87399 -3.91427 -0.01533
N 0. -1.61398 0.72491
C 3.87397 -3.91427 -0.01534
C 5.23043 -4.05323 -0.19934
H 0. -0.88379 1.4235
H 0. 0.88379 -1.4235
H -7.88025 3.1869 0.32865
H -7.88027 -3.18688 -0.32865
H -2.5204 -0.88782 1.09667
H 2.52039 -0.88782 1.09666
H 7.88025 -3.1869 -0.32865
H 7.88027 3.18688 0.32864
H 2.5204 0.88782 -1.09667
H -2.52039 0.88781 -1.09665
H -5.77031 -4.96157 -0.43588
H -3.13895 -4.70717 -0.02713
H -1.32127 -4.08188 -1.00999
H 1.32125 -4.08188 1.01
H 3.13893 -4.70717 -0.02714
H 5.77029 -4.96158 -0.43588
H 9.86479 -1.34632 -0.11953
H 9.8648 1.3463 0.11955
H 5.77031 4.96157 0.43588
H 3.13895 4.70717 0.02712
H 1.32127 4.08188 1.00999
H -1.32125 4.08188 1.01
H -3.13893 4.70717 0.02714
H -5.77029 4.96158 0.43589
H -9.86479 1.34632 0.11953
H -9.8648 1.3463 -0.11955
H 5.01252 -0.93354 0.50522
H -5.01252 0.93353 -0.50522
H -5.01253 -0.93353 0.50522
H 5.01253 0.93354 -0.50523

SCF Done: E(RM06) = -1978.41818064 A.U. after 17 cycles

4b (Hückel [36]^2+7Φ[C,E,F,H])

C 5.19751400 3.8968500 -0.24402400
C 5.60578300 5.24568100 -0.51512000
C 4.48825100 6.01479300 -0.61508800
C 3.33493800 5.18653500 -0.39621000
C 2.02891000 5.57492400 -0.37827500
C 0.86456500 4.76214700 -0.19518100
N -0.31925900 5.34248500 -0.06810600
C -1.21743500 4.31284900 0.12954900
C -2.55979900 4.55526000 0.27687800
C -3.49949900 3.55663100 0.65623300
C -3.30350300 2.40741800 1.42913000
C -4.50839100 1.71279800 1.47689300
C -5.45434900 2.43479700 0.73363900
C -6.80603900 2.07884100 0.40832000
C -7.17458300 0.78390800 0.18979000
N -6.27333900 -0.27430700 0.13163600
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>7.28173000</td>
<td>0.51093400</td>
<td>0.76651400</td>
</tr>
<tr>
<td>H</td>
<td>-5.29373000</td>
<td>-0.17444100</td>
<td>0.34940400</td>
</tr>
</tbody>
</table>

SCF Done: E(RM06) = -1978.36842618 A.U. after 7 cycles

4c ([Hückel [36]²⁺T0₅,20,25,B,F])
<table>
<thead>
<tr>
<th>C</th>
<th>5.59376</th>
<th>1.94523</th>
<th>-1.0937</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.89115</td>
<td>3.27126</td>
<td>-0.71897</td>
</tr>
<tr>
<td>C</td>
<td>4.79467</td>
<td>3.77212</td>
<td>-0.05196</td>
</tr>
<tr>
<td>C</td>
<td>3.78417</td>
<td>2.7803</td>
<td>-0.05349</td>
</tr>
<tr>
<td>C</td>
<td>2.48179</td>
<td>3.02593</td>
<td>0.4373</td>
</tr>
<tr>
<td>C</td>
<td>1.2659</td>
<td>2.39472</td>
<td>0.31234</td>
</tr>
<tr>
<td>N</td>
<td>0.11575</td>
<td>3.04703</td>
<td>0.74555</td>
</tr>
<tr>
<td>C</td>
<td>-1.0234</td>
<td>2.42043</td>
<td>0.31385</td>
</tr>
<tr>
<td>C</td>
<td>-2.2452</td>
<td>3.07209</td>
<td>0.43871</td>
</tr>
<tr>
<td>C</td>
<td>-3.50821</td>
<td>2.86829</td>
<td>-0.13573</td>
</tr>
<tr>
<td>C</td>
<td>-4.46519</td>
<td>3.93759</td>
<td>-0.23759</td>
</tr>
<tr>
<td>C</td>
<td>-5.51878</td>
<td>3.50299</td>
<td>-0.97754</td>
</tr>
<tr>
<td>C</td>
<td>-5.29719</td>
<td>2.1261</td>
<td>-1.29907</td>
</tr>
<tr>
<td>C</td>
<td>-6.13818</td>
<td>1.28966</td>
<td>-1.9819</td>
</tr>
<tr>
<td>C</td>
<td>-5.98551</td>
<td>0.12092</td>
<td>-2.0979</td>
</tr>
<tr>
<td>N</td>
<td>-5.12377</td>
<td>0.78738</td>
<td>-1.32394</td>
</tr>
<tr>
<td>C</td>
<td>-5.28918</td>
<td>2.11512</td>
<td>-1.65871</td>
</tr>
<tr>
<td>C</td>
<td>-4.65019</td>
<td>3.13012</td>
<td>-0.97291</td>
</tr>
<tr>
<td>C</td>
<td>-3.86656</td>
<td>2.9304</td>
<td>0.18263</td>
</tr>
<tr>
<td>C</td>
<td>-2.96216</td>
<td>3.78279</td>
<td>0.8366</td>
</tr>
<tr>
<td>C</td>
<td>-2.33667</td>
<td>3.04481</td>
<td>1.83855</td>
</tr>
<tr>
<td>C</td>
<td>-2.89598</td>
<td>1.75084</td>
<td>1.82576</td>
</tr>
<tr>
<td>C</td>
<td>-2.60372</td>
<td>0.57901</td>
<td>2.6044</td>
</tr>
<tr>
<td>C</td>
<td>-1.33567</td>
<td>0.22923</td>
<td>2.93929</td>
</tr>
<tr>
<td>N</td>
<td>-0.20616</td>
<td>-0.92506</td>
<td>2.51321</td>
</tr>
<tr>
<td>C</td>
<td>-0.9259</td>
<td>-0.21213</td>
<td>2.78491</td>
</tr>
<tr>
<td>C</td>
<td>2.18682</td>
<td>-0.51476</td>
<td>2.30606</td>
</tr>
<tr>
<td>C</td>
<td>2.48756</td>
<td>-1.67507</td>
<td>1.57177</td>
</tr>
<tr>
<td>C</td>
<td>1.8572</td>
<td>-2.96968</td>
<td>1.53122</td>
</tr>
<tr>
<td>C</td>
<td>2.54648</td>
<td>-3.74831</td>
<td>0.64352</td>
</tr>
</tbody>
</table>
C 3.58829 -2.9519 0.07085
C 4.46126 -3.22747 -0.95409
C 5.31938 -2.2492 -1.52525
N 5.19149 -0.94525 -1.22871
C 6.22629 -0.32352 -1.87439
C 6.44047 1.0377 -1.75183
N 4.30506 1.67676 -0.67287
C 0.79106 1.1896 -0.31378
C -0.57518 1.20054 -0.31168
N -4.05488 1.78786 -0.75527
C -6.72457 -1.00118 -2.9737
C -6.26284 -2.25398 -2.71722
N -3.8235 -1.72135 0.83809
C -0.84218 0.93804 3.62958
C 0.51147 0.94978 3.53729
N 3.52421 -1.72332 0.70622
C 6.43432 -2.48886 -2.4162
C 7.02077 -1.27911 -2.61413
H 4.17035 -0.98091 0.43615
H 3.87762 0.7769 -0.86482
H -3.6919 0.8428 -0.84645
H -4.36885 -0.93172 0.49145
H 6.74023 -3.4529 -2.80391
H 7.89504 -1.04796 -3.2104
H 2.35881 -4.78539 0.39434
H 1.05326 -3.29034 2.18203
H 6.83215 3.76986 -0.91312
H 4.68014 4.75925 0.37803
H -4.30723 4.92642 0.17417
H -6.39881 4.06108 -1.2721
H -7.47779 -0.6978 -3.69054
H -6.57563 -3.18772 -3.16878
H -1.63649 -3.41148 2.5799
H -2.7934 -4.82226 0.58544
H 1.4229 0.4123 -0.72899
H -1.2232 0.4376 -0.72649
H 4.48868 -4.24246 -1.34394
H 7.35348 1.45716 -2.17078
H 2.42942 3.99442 0.93716
H 2.96395 0.23756 2.42755
H 1.19933 1.68199 3.94218
H -1.47762 1.65603 4.13371
H -4.75238 -4.15113 -1.33596
H -3.41278 0.10424 2.85616
H -7.01267 1.74888 -2.43888
H -2.17983 4.04368 0.92873
H -0.26275 -1.63865 1.7966
H 0.12004 4.00187 1.07825

SCF Done: E(RM06) = -1978.40266700 A.U. after 7 cycles

4e(Möbius [36]^2-T1^{B,C,E})
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-3.67806</td>
<td>-4.21089</td>
<td>0.76658</td>
</tr>
<tr>
<td>C</td>
<td>-2.34515</td>
<td>-3.88059</td>
<td>0.89752</td>
</tr>
<tr>
<td>C</td>
<td>-1.28777</td>
<td>-4.77202</td>
<td>0.62917</td>
</tr>
<tr>
<td>C</td>
<td>-0.02144</td>
<td>-4.34636</td>
<td>0.27845</td>
</tr>
<tr>
<td>C</td>
<td>0.40398</td>
<td>-3.05832</td>
<td>-0.17201</td>
</tr>
<tr>
<td>C</td>
<td>1.73642</td>
<td>-3.11572</td>
<td>-0.4574</td>
</tr>
<tr>
<td>C</td>
<td>2.20026</td>
<td>-4.44538</td>
<td>-0.19827</td>
</tr>
<tr>
<td>C</td>
<td>3.4685</td>
<td>-5.00721</td>
<td>-0.34892</td>
</tr>
<tr>
<td>C</td>
<td>4.65078</td>
<td>-4.30498</td>
<td>0.55595</td>
</tr>
<tr>
<td>N</td>
<td>4.80374</td>
<td>-2.94041</td>
<td>-0.51001</td>
</tr>
<tr>
<td>C</td>
<td>6.14382</td>
<td>-2.6008</td>
<td>-0.66061</td>
</tr>
<tr>
<td>C</td>
<td>6.64535</td>
<td>-1.32437</td>
<td>-0.55643</td>
</tr>
<tr>
<td>C</td>
<td>5.8503</td>
<td>-0.16157</td>
<td>-0.45588</td>
</tr>
<tr>
<td>C</td>
<td>4.51711</td>
<td>0.06949</td>
<td>-0.87731</td>
</tr>
<tr>
<td>C</td>
<td>4.16174</td>
<td>1.34995</td>
<td>-0.51276</td>
</tr>
<tr>
<td>C</td>
<td>5.26598</td>
<td>1.93395</td>
<td>0.15034</td>
</tr>
<tr>
<td>C</td>
<td>5.37721</td>
<td>3.14299</td>
<td>0.85842</td>
</tr>
<tr>
<td>C</td>
<td>4.34038</td>
<td>4.02459</td>
<td>1.11196</td>
</tr>
<tr>
<td>N</td>
<td>3.08722</td>
<td>3.88999</td>
<td>0.58378</td>
</tr>
<tr>
<td>C</td>
<td>2.33362</td>
<td>4.75344</td>
<td>1.27142</td>
</tr>
<tr>
<td>C</td>
<td>0.92853</td>
<td>4.83412</td>
<td>1.09089</td>
</tr>
<tr>
<td>C</td>
<td>0.24604</td>
<td>4.51314</td>
<td>-0.06437</td>
</tr>
<tr>
<td>C</td>
<td>0.77865</td>
<td>4.43485</td>
<td>-1.42013</td>
</tr>
<tr>
<td>C</td>
<td>-0.29935</td>
<td>4.3145</td>
<td>-2.22793</td>
</tr>
<tr>
<td>C</td>
<td>-1.45285</td>
<td>4.22572</td>
<td>-1.33684</td>
</tr>
<tr>
<td>C</td>
<td>-2.76842</td>
<td>3.91514</td>
<td>-1.77551</td>
</tr>
<tr>
<td>C</td>
<td>-3.71026</td>
<td>3.27352</td>
<td>-1.00621</td>
</tr>
<tr>
<td>N</td>
<td>-4.95873</td>
<td>2.87288</td>
<td>-1.47353</td>
</tr>
<tr>
<td>C</td>
<td>-5.53545</td>
<td>1.99729</td>
<td>-0.60487</td>
</tr>
<tr>
<td>C</td>
<td>-6.76387</td>
<td>1.34572</td>
<td>-0.81454</td>
</tr>
<tr>
<td>N</td>
<td>-6.0824</td>
<td>-0.7391</td>
<td>0.24839</td>
</tr>
<tr>
<td>C</td>
<td>-3.60572</td>
<td>-2.06549</td>
<td>1.37915</td>
</tr>
<tr>
<td>C</td>
<td>-2.30763</td>
<td>-2.53772</td>
<td>1.32595</td>
</tr>
<tr>
<td>N</td>
<td>1.10052</td>
<td>-5.15664</td>
<td>0.21063</td>
</tr>
<tr>
<td>C</td>
<td>5.94662</td>
<td>-4.85324</td>
<td>-0.82374</td>
</tr>
<tr>
<td>C</td>
<td>6.84565</td>
<td>-3.82823</td>
<td>-0.87765</td>
</tr>
<tr>
<td>N</td>
<td>6.28437</td>
<td>1.00408</td>
<td>0.11676</td>
</tr>
<tr>
<td>C</td>
<td>4.38055</td>
<td>5.07118</td>
<td>2.12532</td>
</tr>
<tr>
<td>C</td>
<td>3.10329</td>
<td>5.49377</td>
<td>2.26451</td>
</tr>
<tr>
<td>C</td>
<td>-3.56501</td>
<td>2.6816</td>
<td>0.28907</td>
</tr>
<tr>
<td>N</td>
<td>-1.11873</td>
<td>4.37468</td>
<td>-0.05602</td>
</tr>
<tr>
<td>H</td>
<td>-1.41471</td>
<td>-2.02018</td>
<td>1.65106</td>
</tr>
<tr>
<td>H</td>
<td>-5.09334</td>
<td>-0.59008</td>
<td>0.0966</td>
</tr>
<tr>
<td>H</td>
<td>1.13662</td>
<td>-6.11107</td>
<td>0.54169</td>
</tr>
<tr>
<td>H</td>
<td>3.93558</td>
<td>-0.61998</td>
<td>-1.47686</td>
</tr>
<tr>
<td>H</td>
<td>7.90815</td>
<td>-3.89485</td>
<td>1.07581</td>
</tr>
<tr>
<td>H</td>
<td>5.2594</td>
<td>5.38823</td>
<td>2.67437</td>
</tr>
<tr>
<td>H</td>
<td>-4.88699</td>
<td>1.3422</td>
<td>1.42327</td>
</tr>
<tr>
<td>H</td>
<td>-8.71622</td>
<td>-2.71595</td>
<td>0.2905</td>
</tr>
<tr>
<td>H</td>
<td>6.14195</td>
<td>-5.90903</td>
<td>-0.96283</td>
</tr>
<tr>
<td>H</td>
<td>1.82409</td>
<td>4.52825</td>
<td>-1.68395</td>
</tr>
<tr>
<td>H</td>
<td>-3.92439</td>
<td>-1.10952</td>
<td>1.77558</td>
</tr>
<tr>
<td>H</td>
<td>2.31958</td>
<td>-2.33286</td>
<td>-0.92291</td>
</tr>
<tr>
<td>H</td>
<td>2.71022</td>
<td>6.24402</td>
<td>2.93996</td>
</tr>
<tr>
<td>H</td>
<td>3.22767</td>
<td>1.87176</td>
<td>-0.67228</td>
</tr>
<tr>
<td>H</td>
<td>-0.26186</td>
<td>-2.22364</td>
<td>-0.34563</td>
</tr>
<tr>
<td>H</td>
<td>-2.70991</td>
<td>2.87469</td>
<td>0.92378</td>
</tr>
<tr>
<td>H</td>
<td>-0.32806</td>
<td>4.26596</td>
<td>-3.31046</td>
</tr>
<tr>
<td>H</td>
<td>-9.21474</td>
<td>-0.25576</td>
<td>-0.64324</td>
</tr>
<tr>
<td>H</td>
<td>-6.39584</td>
<td>-4.07111</td>
<td>0.77495</td>
</tr>
</tbody>
</table>
H -1.48572 -5.84321 0.6768
H 3.56247 -6.08933 -0.28606
H 7.72831 -1.22523 -0.506
H 6.33407 3.35628 1.33611
H 0.32462 5.16959 1.93451
H -3.0019 4.10753 -2.8233
H -7.50674 1.79495 -1.46955
H 7.17681 1.11632 0.5793
H -5.32437 3.09025 -2.39081
H 4.15329 -2.32671 -0.03873
H -4.01275 -5.07458 0.36038

SCF Done: E(RM06) = -1978.37780916 A.U. after 7 cycles

4f (Möbius [36]^{1}J^{RCF})

C 7.41057 0.25929 -0.34381
C 8.35484 1.16523 -0.98657
C 7.61095 2.16428 -1.50577
C 6.22271 1.84401 -1.18692
C 5.15562 2.71355 -1.46242
C 3.82154 2.44767 -1.19676
N 2.81414 3.38742 -1.21675
C 1.6126 2.82487 -0.84728
C 0.44756 3.53859 -0.63257
C -0.7948 2.9464 -0.35265
C -1.29504 1.64637 -0.6369
C -2.56749 1.55249 -0.12977
C -2.89591 2.79061 0.48849
C -3.99139 3.20447 1.24232
C -5.14765 2.5022 1.55155
N -5.54265 1.27603 1.07485
C -6.76638 0.94876 1.59626
C -7.51861 -0.14915 1.1802
C -7.14167 -1.05178 0.19261
C -8.09009 -1.9148 -0.49238
C -7.41602 -2.45704 -1.52954
C -6.04508 -1.99125 -1.40105
C -5.00882 -2.42458 -2.23846
C -3.65555 -2.33717 -1.97028
N -3.0972 -1.90954 -0.7888
C -1.73212 -2.10888 -0.80144
C -0.91984 -1.91676 0.30652
C 0.48249 -2.00518 0.31236
C 1.4322 -1.9283 -0.74335
C 2.69193 -2.02566 -0.20168
C 2.56416 -2.17734 1.20473
C 3.5373 -2.47157 2.16457
C 4.90717 -2.30765 2.00421
N 5.51493 -1.51538 1.05813
C 6.87502 -1.61631 1.1712
C 7.77295 -0.82381 0.45337
N 6.12647 0.67914 -0.5094
C 3.2034 1.21188 -0.83595
C 1.88027 1.43397 -0.61827
N -1.80424 3.61154 0.29149
C -6.16266 2.94076 2.45599
C -7.14369 1.98874 2.49302
N -5.89222 -1.13969 -0.35794
C -2.5782 -2.78502 -2.79627

75
SCF Done: E(RM06) = -1978.42150412 A.U. after 7 cycles

4g (Twisted-Hückel [36]+T20\gamma)

C 6.39518 2.00872 -0.60935
C 6.51797 3.34541 -1.1295
C 5.30091 3.72498 -1.60204
C 4.38285 2.62706 -1.41824
C 3.03161 2.59233 -1.75845
C 2.22585 1.45551 -1.71363
N 0.86114 1.49875 -1.76206
C 0.30839 0.22012 -1.683
C -1.04353 0.00815 -1.63452
C -1.74085 -1.21867 -1.4971
C -1.32802 -2.56827 -1.45017
C -2.46065 -3.35521 -1.31703
C -3.57691 -2.50003 -1.25357
C -4.94538 -2.83311 -1.1339
C -5.97827 -1.95883 -0.88806
N -5.80041 -0.62823 -0.5538
C -7.04096 -0.13926 -0.41879
C -7.32283 1.18716 0.03352
C -6.39518 2.00872 0.60934
C -6.51797 3.34542 1.12948
C -5.30091 3.72499 1.60202
SCF Done: E(RM06) = -1978.42664075 A.U. after 20 cycles
<table>
<thead>
<tr>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
</tbody>
</table>

4h (Twisted-Hückel [36]22-2T2(6))
SCF Done: E(RM06) = -1978.42701832 A.U. after 20 cycles

4i (Twisted-Hückel [36]2−T2′ex)

C	5.25963700	2.17663800	-0.27408900
C	5.44302700	3.57405400	-0.22358200
C	4.21801000	4.16940200	-0.46687400
C	3.28322100	3.13905500	-0.69104600
C	1.93691300	3.22653400	-1.09867300
C	1.11227700	2.16036700	-1.37511200
N	1.49845900	0.83169300	-1.28840600
C	0.41071300	0.13455600	-1.61793800
C	0.44774400	-1.29248800	-1.70675600
C	-0.60920200	-2.14104000	-1.57891800
C	-0.60358800	-3.55995500	-1.81055600
C	-1.83699500	-4.04448800	-1.53127000
C	-2.66927700	-2.95410200	-1.09005300
C	-3.98562800	-3.10117500	-0.69885400
C	-4.94012400	-2.14124200	-0.34576900
N	-4.77684600	-0.78080000	-0.28205400
C	-6.01240800	-0.17896800	-0.00449600
C	-6.23231500	1.16681300	0.14765900
C	-5.25966100	2.17659900	0.27404300
C	-5.44301400	3.57402300	0.22360300
C	-4.21798000	4.16932100	0.46692700
C	-3.28322900	3.13893600	0.69108700
C	-1.93693200	3.22637400	1.09876800
C	-1.11230800	2.16020400	1.37524400
N	-1.49848900	0.83152400	1.28861600
C	-0.41071800	0.13439800	1.61809500
C	-0.44771200	-1.29264900	1.70690400
C	-0.60925000	-2.14117300	1.57900300
C	-0.60369300	-3.56008900	1.81063900
C	-1.83709400	-4.04458800	1.53126900
C	-2.66931800	-2.95417800	1.09000200
C	-3.98564800	-3.10121600	0.69872100
C	-4.94011000	-2.14126300	0.34559900
N	4.77682100	-0.78081700	0.28195100
C	6.01236500	-0.17896600	0.00433600
C 6.23317300 1.16682300 -0.14777300
N 3.93032000 1.94259600 -0.52654600
C -0.26791100 2.26240300 -1.79453900
C -0.72043300 0.99204900 -1.92860300
N -1.90887600 -1.80528200 -1.17293600
C -6.29948200 -2.42311100 -0.01767900
C -6.95368100 -1.23707400 0.15351300
N -3.93034600 1.94250300 0.52645600
C 0.26787200 2.26225700 1.79469500
C 0.72040000 0.99190900 1.92880300
N 1.90887600 -1.80532800 1.17292500
C 6.29945200 -2.42311000 0.01743400
C 6.95363400 -1.23706200 -0.15374900
H 6.38439100 4.06561000 -0.01341300
H 3.99810600 5.22872600 -0.50263500
H -0.79899700 3.18891400 -1.98176800
H -1.69034000 0.66258900 -2.28344000
H 0.25414900 -4.10389900 -2.18725200
H -2.19129500 -5.06283800 -1.63346000
H -6.70860000 -3.42219400 0.06160800
H -7.99394800 -1.08886400 0.41616900
H -6.38436200 4.06561500 0.01344700
H -3.99804600 5.22637000 0.50273800
H 0.79894500 3.18877600 1.98192100
H 1.69030400 0.66246900 2.28366500
H -0.25400300 -4.10405700 2.18739400
H 2.19143000 -5.06292700 1.63343500
H 6.70857400 -3.42218700 -0.06190200
H 7.99388900 -1.08883800 -0.41644700
H 3.48079700 1.08263200 -0.84616400
H -2.05485400 -0.98786900 -0.58518600
H -3.48083100 1.08249700 0.84597600
H 2.05480300 -0.98797000 0.58515600
H 4.35403900 -4.12405100 0.70554700
H 7.27182100 1.48431200 -0.21124500
H -1.53075100 4.22946600 1.21790300
H 1.53074300 4.22963300 -1.21778600
H -4.35399700 -4.12401700 -0.70571400
H 1.42064400 -1.74728500 -1.89346300
H -1.42059300 -1.74747100 1.89365100
H -7.27186100 1.48431300 0.21112000
H -4.05316000 -0.28567300 -0.78874900
H 4.05318100 -0.28572300 0.78874500

SCF Done: E(RM06) = -1978.42096839 A.U. after 19 cycles

5a (Hückel [38])2+705.1025,30)

C 7.62317 -1.26098 -0.14857
C 8.95199 -0.9007 -0.48497
C 9.0548 0.47109 -0.4561
C 7.78807 1.00613 -0.11962
C 7.38795 2.32803 0.04415
C 6.06244 2.75176 0.12227
C 5.53482 3.99784 0.54698
C 4.16363 3.9412 0.46967
C 3.79182 2.6678 -0.04059
C 2.57353 2.0634 -0.34607
C 1.28395 2.55404 -0.17141
C 0.78202 3.7736 0.36342

80
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>C</th>
<th></th>
<th>N</th>
<th></th>
<th>C</th>
<th></th>
<th>C</th>
<th></th>
<th>C</th>
<th></th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-0.58689</td>
<td>3.73593</td>
<td>0.32799</td>
<td></td>
<td></td>
<td>-0.9918</td>
<td>2.48931</td>
<td>-0.2279</td>
<td></td>
<td></td>
<td>-2.25621</td>
<td>1.94057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3.46929</td>
<td>2.62647</td>
<td>-0.33843</td>
<td></td>
<td></td>
<td>-4.67193</td>
<td>1.95245</td>
<td>-0.22917</td>
<td></td>
<td></td>
<td>-5.72508</td>
<td>2.84779</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7.0668</td>
<td>2.52937</td>
<td>0.04265</td>
<td></td>
<td></td>
<td>-7.62317</td>
<td>1.26098</td>
<td>0.14851</td>
<td></td>
<td></td>
<td>-8.95199</td>
<td>0.90072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9.0548</td>
<td>-0.47107</td>
<td>0.45611</td>
<td></td>
<td></td>
<td>-7.78807</td>
<td>-1.00614</td>
<td>0.11968</td>
<td></td>
<td></td>
<td>-7.38795</td>
<td>-2.32804</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.06244</td>
<td>-2.75178</td>
<td>-0.12213</td>
<td></td>
<td></td>
<td>-5.53483</td>
<td>-3.99788</td>
<td>-0.54679</td>
<td></td>
<td></td>
<td>-4.16364</td>
<td>-3.94124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3.79182</td>
<td>-2.66782</td>
<td>0.04072</td>
<td></td>
<td></td>
<td>-2.57352</td>
<td>-2.06342</td>
<td>0.34616</td>
<td></td>
<td></td>
<td>-1.28395</td>
<td>-2.55403</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.78202</td>
<td>-3.77353</td>
<td>-0.36353</td>
<td></td>
<td></td>
<td>0.58689</td>
<td>-3.73585</td>
<td>-0.32813</td>
<td></td>
<td></td>
<td>0.99181</td>
<td>-2.48928</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25622</td>
<td>-1.94057</td>
<td>0.41702</td>
<td></td>
<td></td>
<td>3.46929</td>
<td>-2.62647</td>
<td>0.33836</td>
<td></td>
<td></td>
<td>4.67193</td>
<td>-1.95245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.72507</td>
<td>-2.8478</td>
<td>0.15092</td>
<td></td>
<td></td>
<td>7.0668</td>
<td>-2.52938</td>
<td>-0.04277</td>
<td></td>
<td></td>
<td>6.91313</td>
<td>-0.07434</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.97267</td>
<td>1.95938</td>
<td>-0.20183</td>
<td></td>
<td></td>
<td>0.17186</td>
<td>1.79411</td>
<td>-0.49145</td>
<td></td>
<td></td>
<td>-3.79041</td>
<td>4.00887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5.15315</td>
<td>4.13975</td>
<td>-0.29612</td>
<td></td>
<td></td>
<td>-6.91312</td>
<td>0.07434</td>
<td>-0.02718</td>
<td></td>
<td></td>
<td>-4.97267</td>
<td>-1.9594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.17186</td>
<td>-1.79411</td>
<td>0.49151</td>
<td></td>
<td></td>
<td>3.7904</td>
<td>-4.00888</td>
<td>0.40459</td>
<td></td>
<td></td>
<td>5.15313</td>
<td>-4.13976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.21564</td>
<td>-0.01306</td>
<td>0.76245</td>
<td></td>
<td></td>
<td>-6.21563</td>
<td>0.01302</td>
<td>-0.76243</td>
<td></td>
<td></td>
<td>-0.20687</td>
<td>-0.9504</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>0.20689</td>
<td>0.95031</td>
<td>-1.04802</td>
<td></td>
<td></td>
<td>-7.74835</td>
<td>3.37007</td>
<td>0.14476</td>
<td></td>
<td></td>
<td>-8.16296</td>
<td>-3.08598</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>-2.64153</td>
<td>-1.0534</td>
<td>0.75995</td>
<td></td>
<td></td>
<td>2.30582</td>
<td>-0.87296</td>
<td>0.64563</td>
<td></td>
<td></td>
<td>7.74834</td>
<td>-3.37007</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>8.16295</td>
<td>3.08597</td>
<td>0.12063</td>
<td></td>
<td></td>
<td>2.64153</td>
<td>1.05337</td>
<td>-0.75982</td>
<td></td>
<td></td>
<td>-2.3058</td>
<td>0.87294</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>-6.1335</td>
<td>-4.82546</td>
<td>-0.90616</td>
<td></td>
<td></td>
<td>-3.48215</td>
<td>-4.73234</td>
<td>-0.74942</td>
<td></td>
<td></td>
<td>-1.38455</td>
<td>-4.57446</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1.26179</td>
<td>-4.48468</td>
<td>-0.7212</td>
<td></td>
<td></td>
<td>3.07884</td>
<td>-4.80188</td>
<td>0.59348</td>
<td></td>
<td></td>
<td>5.72891</td>
<td>-5.05538</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>9.72955</td>
<td>-1.60824</td>
<td>-0.74496</td>
<td></td>
<td></td>
<td>9.929</td>
<td>1.06568</td>
<td>-0.6897</td>
<td></td>
<td></td>
<td>6.13349</td>
<td>4.8254</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>3.48214</td>
<td>4.73228</td>
<td>0.74964</td>
<td></td>
<td></td>
<td>1.38455</td>
<td>4.57459</td>
<td>0.76829</td>
<td></td>
<td></td>
<td>1.2618</td>
<td>4.48481</td>
</tr>
</tbody>
</table>
SCF Done: $E(\text{RM06}) = -1979.63837571$ A.U. after 8 cycles

$5b$ (Hückel [38]$^2\! T\pi^B,C,F,H$)

<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.16773</td>
<td>3.93505</td>
<td>-0.17192</td>
</tr>
<tr>
<td>C</td>
<td>5.62692</td>
<td>5.28035</td>
<td>-0.3073</td>
</tr>
<tr>
<td>C</td>
<td>4.54029</td>
<td>6.10437</td>
<td>-0.36331</td>
</tr>
<tr>
<td>C</td>
<td>3.36072</td>
<td>5.30637</td>
<td>-0.2483</td>
</tr>
<tr>
<td>C</td>
<td>2.05225</td>
<td>5.76836</td>
<td>-0.20234</td>
</tr>
<tr>
<td>C</td>
<td>0.89513</td>
<td>4.98778</td>
<td>-0.17803</td>
</tr>
<tr>
<td>C</td>
<td>0.70811</td>
<td>3.59166</td>
<td>-0.40256</td>
</tr>
<tr>
<td>C</td>
<td>-0.62178</td>
<td>3.30394</td>
<td>-0.25924</td>
</tr>
<tr>
<td>C</td>
<td>-1.31583</td>
<td>4.50819</td>
<td>0.05793</td>
</tr>
<tr>
<td>C</td>
<td>-2.67624</td>
<td>4.70278</td>
<td>0.25315</td>
</tr>
<tr>
<td>C</td>
<td>-3.53487</td>
<td>3.63525</td>
<td>0.55498</td>
</tr>
<tr>
<td>C</td>
<td>-3.22079</td>
<td>2.39798</td>
<td>1.15859</td>
</tr>
<tr>
<td>C</td>
<td>-4.36946</td>
<td>1.63798</td>
<td>1.20941</td>
</tr>
<tr>
<td>C</td>
<td>-5.42736</td>
<td>2.38904</td>
<td>0.63969</td>
</tr>
<tr>
<td>C</td>
<td>-6.77058</td>
<td>2.0143</td>
<td>0.40196</td>
</tr>
<tr>
<td>C</td>
<td>-7.15374</td>
<td>0.70233</td>
<td>0.21158</td>
</tr>
<tr>
<td>N</td>
<td>-6.26907</td>
<td>-0.34599</td>
<td>0.09487</td>
</tr>
<tr>
<td>C</td>
<td>-6.91647</td>
<td>-1.53818</td>
<td>-0.11283</td>
</tr>
<tr>
<td>C</td>
<td>-6.27534</td>
<td>-2.75136</td>
<td>-0.28787</td>
</tr>
<tr>
<td>C</td>
<td>-4.88016</td>
<td>-2.87614</td>
<td>-0.45029</td>
</tr>
<tr>
<td>C</td>
<td>-3.92108</td>
<td>-1.90602</td>
<td>-0.85479</td>
</tr>
<tr>
<td>C</td>
<td>-2.67637</td>
<td>-2.48059</td>
<td>-0.8165</td>
</tr>
<tr>
<td>C</td>
<td>-2.81466</td>
<td>-3.83044</td>
<td>-0.40676</td>
</tr>
<tr>
<td>C</td>
<td>-1.84409</td>
<td>-4.79257</td>
<td>-0.12787</td>
</tr>
<tr>
<td>C</td>
<td>-0.47746</td>
<td>-4.63791</td>
<td>-0.35364</td>
</tr>
<tr>
<td>C</td>
<td>0.23951</td>
<td>-3.71188</td>
<td>-1.15699</td>
</tr>
<tr>
<td>C</td>
<td>1.58344</td>
<td>-3.91074</td>
<td>-0.96002</td>
</tr>
<tr>
<td>C</td>
<td>1.74589</td>
<td>-4.98565</td>
<td>-0.04288</td>
</tr>
<tr>
<td>C</td>
<td>2.92269</td>
<td>-5.56557</td>
<td>0.4563</td>
</tr>
<tr>
<td>C</td>
<td>4.15165</td>
<td>-4.9319</td>
<td>0.48971</td>
</tr>
<tr>
<td>C</td>
<td>5.42833</td>
<td>-5.49786</td>
<td>0.79998</td>
</tr>
<tr>
<td>C</td>
<td>6.35872</td>
<td>-4.5024</td>
<td>0.76399</td>
</tr>
<tr>
<td>C</td>
<td>5.69869</td>
<td>-3.27016</td>
<td>0.45183</td>
</tr>
<tr>
<td>C</td>
<td>6.26793</td>
<td>-2.01815</td>
<td>0.4003</td>
</tr>
<tr>
<td>C</td>
<td>5.64412</td>
<td>-0.79647</td>
<td>0.08035</td>
</tr>
<tr>
<td>N</td>
<td>6.2907</td>
<td>0.4058</td>
<td>0.24945</td>
</tr>
<tr>
<td>C</td>
<td>5.48667</td>
<td>1.46274</td>
<td>-0.10901</td>
</tr>
<tr>
<td>C</td>
<td>5.93492</td>
<td>2.79645</td>
<td>-0.0674</td>
</tr>
<tr>
<td>N</td>
<td>3.77852</td>
<td>3.99277</td>
<td>-0.17258</td>
</tr>
<tr>
<td>N</td>
<td>-0.35695</td>
<td>5.50482</td>
<td>0.05755</td>
</tr>
<tr>
<td>N</td>
<td>-4.89648</td>
<td>3.61517</td>
<td>0.31504</td>
</tr>
<tr>
<td>C</td>
<td>-8.46035</td>
<td>0.12243</td>
<td>0.06017</td>
</tr>
<tr>
<td>C</td>
<td>-8.31938</td>
<td>-1.2242</td>
<td>-0.10577</td>
</tr>
<tr>
<td>N</td>
<td>-4.17347</td>
<td>-4.02845</td>
<td>-0.2192</td>
</tr>
<tr>
<td>N</td>
<td>0.48369</td>
<td>-5.42783</td>
<td>0.25749</td>
</tr>
<tr>
<td>N</td>
<td>4.36498</td>
<td>-3.5866</td>
<td>0.24805</td>
</tr>
<tr>
<td>C</td>
<td>4.37019</td>
<td>-0.48064</td>
<td>-0.44622</td>
</tr>
</tbody>
</table>
SCF Done: $E(\text{RM06}) = -1979.64498137$ A.U. after 7 cycles

5c (Hückel [38]$^2\cdots T0^5,20,25,83$)

C	4.27267	0.8944	-0.55563
H	-9.38437	0.68551	0.09612
H	-4.48766	0.69847	1.73583
H	-2.26248	2.16119	1.6018
H	-1.1085	2.35734	-0.45232
H	1.47215	2.91162	-0.75516
H	4.53374	7.17991	-0.4874
H	6.67027	5.56016	-0.38392
H	3.46143	1.44632	-1.01372
H	-5.38978	4.31801	-0.21894
H	3.21469	3.264	0.24169
H	-9.10691	-1.95325	-0.24895
H	-4.14337	-0.90999	-1.21466
H	-1.74079	-1.9858	-1.03117
H	-0.20878	-3.04412	-1.87996
H	2.39516	-3.44304	-1.50389
H	5.59451	-6.54962	0.9955
H	7.4255	-4.59166	0.92802
H	3.63545	-1.19562	-0.79432
H	-4.58639	-4.88953	0.11179
H	3.62191	-2.90675	0.32538
H	7.32423	-1.97941	0.66208
H	7.00476	2.96145	0.05243
H	1.93778	6.85014	-0.17057
H	-3.0876	5.70791	0.16041
H	-7.53403	2.78373	0.31177
H	-6.88822	-3.64969	-0.26518
H	2.88029	-6.57506	0.85986
H	-2.17177	-5.71351	0.35628
H	-0.52832	6.46085	0.33687
H	0.28404	-6.12062	0.96595
H	7.2076	0.50354	0.66379
H	-5.27158	-0.24943	0.1855
5d (Hückel [38] 2+ T0 [20, 25, 8])

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.56619</td>
<td>2.58911</td>
<td>-0.51752</td>
</tr>
<tr>
<td>C</td>
<td>5.90571</td>
<td>3.77787</td>
<td>0.19462</td>
</tr>
<tr>
<td>C</td>
<td>4.78593</td>
<td>4.2409</td>
<td>0.81125</td>
</tr>
<tr>
<td>C</td>
<td>3.68391</td>
<td>3.93434</td>
<td>0.47111</td>
</tr>
<tr>
<td>C</td>
<td>2.38692</td>
<td>3.67681</td>
<td>0.81856</td>
</tr>
<tr>
<td>C</td>
<td>1.13896</td>
<td>3.073</td>
<td>0.54469</td>
</tr>
<tr>
<td>C</td>
<td>0.69542</td>
<td>1.87539</td>
<td>-0.05445</td>
</tr>
<tr>
<td>C</td>
<td>-0.69546</td>
<td>1.87538</td>
<td>-0.05444</td>
</tr>
<tr>
<td>C</td>
<td>-1.13901</td>
<td>3.07299</td>
<td>0.5447</td>
</tr>
<tr>
<td>C</td>
<td>-2.38697</td>
<td>3.6768</td>
<td>0.81857</td>
</tr>
<tr>
<td>C</td>
<td>-3.68396</td>
<td>3.9343</td>
<td>0.47111</td>
</tr>
<tr>
<td>C</td>
<td>-4.78599</td>
<td>4.24087</td>
<td>0.81126</td>
</tr>
<tr>
<td>C</td>
<td>-5.90576</td>
<td>3.77783</td>
<td>0.19463</td>
</tr>
<tr>
<td>C</td>
<td>-5.56623</td>
<td>2.58907</td>
<td>-0.51751</td>
</tr>
<tr>
<td>C</td>
<td>-6.44399</td>
<td>1.83521</td>
<td>-1.27445</td>
</tr>
<tr>
<td>C</td>
<td>-6.31132</td>
<td>0.52273</td>
<td>-1.73711</td>
</tr>
<tr>
<td>N</td>
<td>-5.37765</td>
<td>-0.39239</td>
<td>-1.3243</td>
</tr>
<tr>
<td>C</td>
<td>-5.57701</td>
<td>-1.60804</td>
<td>-1.97249</td>
</tr>
<tr>
<td>C</td>
<td>-4.84656</td>
<td>-2.76181</td>
<td>-1.77445</td>
</tr>
<tr>
<td>C</td>
<td>-3.91017</td>
<td>-3.00597</td>
<td>-0.7616</td>
</tr>
<tr>
<td>C</td>
<td>-2.86459</td>
<td>-3.94298</td>
<td>-0.75232</td>
</tr>
<tr>
<td>C</td>
<td>-2.11676</td>
<td>-3.7473</td>
<td>0.39767</td>
</tr>
<tr>
<td>C</td>
<td>-2.72512</td>
<td>-2.72187</td>
<td>1.51177</td>
</tr>
<tr>
<td>C</td>
<td>-2.40463</td>
<td>-2.20088</td>
<td>2.42932</td>
</tr>
<tr>
<td>C</td>
<td>-1.13504</td>
<td>-2.19217</td>
<td>2.95042</td>
</tr>
<tr>
<td>C</td>
<td>-0.68001</td>
<td>-1.69412</td>
<td>4.22056</td>
</tr>
<tr>
<td>C</td>
<td>0.68004</td>
<td>-1.69412</td>
<td>4.22056</td>
</tr>
<tr>
<td>C</td>
<td>1.13508</td>
<td>-2.19218</td>
<td>2.95043</td>
</tr>
<tr>
<td>C</td>
<td>2.40467</td>
<td>-2.2009</td>
<td>2.42933</td>
</tr>
<tr>
<td>C</td>
<td>2.72516</td>
<td>-2.72189</td>
<td>1.51179</td>
</tr>
<tr>
<td>C</td>
<td>2.11681</td>
<td>-3.74732</td>
<td>0.39768</td>
</tr>
<tr>
<td>C</td>
<td>2.86465</td>
<td>-3.94298</td>
<td>-0.75232</td>
</tr>
<tr>
<td>C</td>
<td>3.91022</td>
<td>-3.00596</td>
<td>-0.76159</td>
</tr>
<tr>
<td>C</td>
<td>4.8466</td>
<td>-2.76179</td>
<td>-1.77444</td>
</tr>
<tr>
<td>C</td>
<td>5.57703</td>
<td>-1.608</td>
<td>-1.97249</td>
</tr>
<tr>
<td>N</td>
<td>5.37765</td>
<td>-0.39235</td>
<td>-1.32431</td>
</tr>
<tr>
<td>C</td>
<td>6.3113</td>
<td>0.52277</td>
<td>-1.73712</td>
</tr>
<tr>
<td>C</td>
<td>6.44396</td>
<td>1.83526</td>
<td>-1.27446</td>
</tr>
<tr>
<td>N</td>
<td>4.21066</td>
<td>2.34359</td>
<td>-0.28981</td>
</tr>
<tr>
<td>N</td>
<td>-0.00003</td>
<td>3.75037</td>
<td>0.90737</td>
</tr>
<tr>
<td>N</td>
<td>-4.2107</td>
<td>2.34356</td>
<td>-0.2898</td>
</tr>
<tr>
<td>C</td>
<td>-7.14833</td>
<td>-0.13814</td>
<td>-2.68022</td>
</tr>
<tr>
<td>C</td>
<td>-6.68216</td>
<td>-1.41362</td>
<td>-2.84794</td>
</tr>
<tr>
<td>N</td>
<td>-3.79503</td>
<td>-2.26782</td>
<td>0.41144</td>
</tr>
<tr>
<td>N</td>
<td>0.00002</td>
<td>-2.55933</td>
<td>2.25125</td>
</tr>
<tr>
<td>N</td>
<td>3.79508</td>
<td>-2.26783</td>
<td>0.41147</td>
</tr>
<tr>
<td>C</td>
<td>6.68217</td>
<td>-1.41357</td>
<td>-2.84794</td>
</tr>
<tr>
<td>C</td>
<td>7.14832</td>
<td>-0.13808</td>
<td>-2.68022</td>
</tr>
<tr>
<td>H</td>
<td>4.56794</td>
<td>-1.76461</td>
<td>0.82835</td>
</tr>
<tr>
<td>H</td>
<td>3.64938</td>
<td>1.88867</td>
<td>-0.99905</td>
</tr>
<tr>
<td>H</td>
<td>-3.64941</td>
<td>1.88864</td>
<td>-0.99904</td>
</tr>
<tr>
<td>H</td>
<td>-4.56789</td>
<td>-1.76459</td>
<td>0.82832</td>
</tr>
<tr>
<td>H</td>
<td>7.08248</td>
<td>-2.18206</td>
<td>3.49742</td>
</tr>
<tr>
<td>H</td>
<td>7.988</td>
<td>0.33038</td>
<td>-3.17738</td>
</tr>
<tr>
<td>H</td>
<td>2.6806</td>
<td>-4.66263</td>
<td>-1.54027</td>
</tr>
<tr>
<td>H</td>
<td>1.27793</td>
<td>-4.34586</td>
<td>0.72951</td>
</tr>
<tr>
<td>H</td>
<td>6.90762</td>
<td>4.18524</td>
<td>0.24381</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C</td>
<td>4.69953</td>
<td>5.10663</td>
<td>1.45666</td>
</tr>
<tr>
<td>H</td>
<td>-4.69959</td>
<td>5.1066</td>
<td>1.45668</td>
</tr>
<tr>
<td>H</td>
<td>-6.90768</td>
<td>4.18518</td>
<td>0.24382</td>
</tr>
<tr>
<td>H</td>
<td>-7.98801</td>
<td>0.33031</td>
<td>-3.17737</td>
</tr>
<tr>
<td>H</td>
<td>-7.08245</td>
<td>-2.18211</td>
<td>-3.49743</td>
</tr>
<tr>
<td>H</td>
<td>-1.27787</td>
<td>-4.34584</td>
<td>0.72951</td>
</tr>
<tr>
<td>H</td>
<td>-2.68053</td>
<td>-4.66263</td>
<td>-1.54028</td>
</tr>
<tr>
<td>H</td>
<td>1.33182</td>
<td>1.07713</td>
<td>-0.41588</td>
</tr>
<tr>
<td>H</td>
<td>-1.33186</td>
<td>1.07711</td>
<td>-0.41586</td>
</tr>
<tr>
<td>H</td>
<td>4.9994</td>
<td>-3.56049</td>
<td>-2.4972</td>
</tr>
<tr>
<td>H</td>
<td>7.39067</td>
<td>2.31678</td>
<td>-1.50825</td>
</tr>
<tr>
<td>H</td>
<td>2.3119</td>
<td>4.60191</td>
<td>1.39104</td>
</tr>
<tr>
<td>H</td>
<td>3.18547</td>
<td>-1.71478</td>
<td>3.01089</td>
</tr>
<tr>
<td>H</td>
<td>1.3391</td>
<td>-1.38136</td>
<td>5.02082</td>
</tr>
<tr>
<td>H</td>
<td>-1.33907</td>
<td>-1.38134</td>
<td>5.02081</td>
</tr>
<tr>
<td>H</td>
<td>-4.99936</td>
<td>-3.56051</td>
<td>-2.49721</td>
</tr>
<tr>
<td>H</td>
<td>-3.18543</td>
<td>-1.71476</td>
<td>3.01086</td>
</tr>
<tr>
<td>H</td>
<td>-7.39071</td>
<td>2.31671</td>
<td>-1.50824</td>
</tr>
<tr>
<td>H</td>
<td>-2.31196</td>
<td>4.6019</td>
<td>1.39104</td>
</tr>
<tr>
<td>H</td>
<td>-0.00003</td>
<td>4.68054</td>
<td>1.30328</td>
</tr>
<tr>
<td>H</td>
<td>0.00002</td>
<td>-2.66009</td>
<td>1.24444</td>
</tr>
<tr>
<td>H</td>
<td>4.64085</td>
<td>-0.20271</td>
<td>-0.6609</td>
</tr>
<tr>
<td>H</td>
<td>-4.64086</td>
<td>-0.20274</td>
<td>-0.6609</td>
</tr>
</tbody>
</table>

SCF Done: \(E(RM06) = -1979.628777659 \) A.U. after 7 cycles

5e (Möbius [38] \({}^2T_1^{3,4,5,6,7}\))

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7.16154</td>
<td>0.32585</td>
<td>0.15993</td>
</tr>
<tr>
<td>C</td>
<td>8.40823</td>
<td>-0.4089</td>
<td>0.20906</td>
</tr>
<tr>
<td>C</td>
<td>8.17192</td>
<td>-1.68322</td>
<td>-0.18231</td>
</tr>
<tr>
<td>C</td>
<td>6.76085</td>
<td>-1.82351</td>
<td>-0.47782</td>
</tr>
<tr>
<td>C</td>
<td>6.05596</td>
<td>-2.97131</td>
<td>-0.72994</td>
</tr>
<tr>
<td>C</td>
<td>4.64481</td>
<td>-2.99985</td>
<td>-0.90238</td>
</tr>
<tr>
<td>C</td>
<td>3.7463</td>
<td>-1.98373</td>
<td>-1.30862</td>
</tr>
<tr>
<td>C</td>
<td>2.46083</td>
<td>-2.48099</td>
<td>-1.20852</td>
</tr>
<tr>
<td>C</td>
<td>2.53452</td>
<td>-3.80983</td>
<td>-0.74433</td>
</tr>
<tr>
<td>C</td>
<td>1.50889</td>
<td>-4.71484</td>
<td>-0.45061</td>
</tr>
<tr>
<td>C</td>
<td>0.21553</td>
<td>-4.32293</td>
<td>-0.13887</td>
</tr>
<tr>
<td>C</td>
<td>-0.26816</td>
<td>-3.06008</td>
<td>0.29312</td>
</tr>
<tr>
<td>C</td>
<td>-1.61572</td>
<td>-3.16624</td>
<td>0.5311</td>
</tr>
<tr>
<td>C</td>
<td>-2.01511</td>
<td>-4.50557</td>
<td>0.25113</td>
</tr>
<tr>
<td>C</td>
<td>-3.27573</td>
<td>-5.12819</td>
<td>0.32204</td>
</tr>
<tr>
<td>C</td>
<td>-4.48876</td>
<td>-4.48238</td>
<td>0.43576</td>
</tr>
<tr>
<td>N</td>
<td>-4.70734</td>
<td>-3.12393</td>
<td>0.44045</td>
</tr>
<tr>
<td>C</td>
<td>-6.0769</td>
<td>-2.85479</td>
<td>0.42499</td>
</tr>
<tr>
<td>C</td>
<td>-6.63246</td>
<td>-1.6168</td>
<td>0.31539</td>
</tr>
<tr>
<td>C</td>
<td>-5.89088</td>
<td>-0.39369</td>
<td>0.34732</td>
</tr>
<tr>
<td>C</td>
<td>-4.70519</td>
<td>-0.06344</td>
<td>1.0164</td>
</tr>
<tr>
<td>C</td>
<td>-4.41128</td>
<td>1.27198</td>
<td>0.73734</td>
</tr>
<tr>
<td>C</td>
<td>-5.40177</td>
<td>1.7671</td>
<td>-0.12308</td>
</tr>
<tr>
<td>C</td>
<td>-5.54853</td>
<td>2.99151</td>
<td>-0.82873</td>
</tr>
<tr>
<td>C</td>
<td>-4.59273</td>
<td>3.94756</td>
<td>-1.02588</td>
</tr>
<tr>
<td>C</td>
<td>-4.66743</td>
<td>5.09603</td>
<td>-1.88429</td>
</tr>
<tr>
<td>C</td>
<td>-3.43095</td>
<td>5.65873</td>
<td>-1.97037</td>
</tr>
<tr>
<td>C</td>
<td>-2.54189</td>
<td>4.9164</td>
<td>-1.12347</td>
</tr>
<tr>
<td>C</td>
<td>-1.17844</td>
<td>5.08634</td>
<td>-0.9323</td>
</tr>
<tr>
<td>C</td>
<td>-0.46895</td>
<td>4.54795</td>
<td>0.1518</td>
</tr>
<tr>
<td>C</td>
<td>-0.93752</td>
<td>4.22961</td>
<td>1.46753</td>
</tr>
<tr>
<td>C</td>
<td>0.15071</td>
<td>3.97069</td>
<td>2.25519</td>
</tr>
<tr>
<td>Element</td>
<td>x1</td>
<td>y1</td>
<td>z1</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>C</td>
<td>1.31923</td>
<td>4.00901</td>
<td>1.44106</td>
</tr>
<tr>
<td>C</td>
<td>3.60063</td>
<td>3.16068</td>
<td>0.91914</td>
</tr>
<tr>
<td>C</td>
<td>5.55286</td>
<td>2.14228</td>
<td>0.40304</td>
</tr>
<tr>
<td>N</td>
<td>6.21823</td>
<td>-0.56304</td>
<td>-0.34433</td>
</tr>
<tr>
<td>N</td>
<td>-0.88107</td>
<td>-5.17566</td>
<td>-0.11157</td>
</tr>
<tr>
<td>C</td>
<td>-6.7343</td>
<td>-4.13402</td>
<td>0.50409</td>
</tr>
<tr>
<td>N</td>
<td>-3.28982</td>
<td>3.92466</td>
<td>-0.53421</td>
</tr>
<tr>
<td>C</td>
<td>3.51688</td>
<td>2.69984</td>
<td>-0.40587</td>
</tr>
<tr>
<td>H</td>
<td>1.54757</td>
<td>-1.99435</td>
<td>-1.52566</td>
</tr>
<tr>
<td>H</td>
<td>-0.87502</td>
<td>-6.12706</td>
<td>-0.45309</td>
</tr>
<tr>
<td>H</td>
<td>-7.80857</td>
<td>-4.25905</td>
<td>0.56018</td>
</tr>
<tr>
<td>H</td>
<td>4.99255</td>
<td>1.61571</td>
<td>-1.66422</td>
</tr>
<tr>
<td>H</td>
<td>-5.9388</td>
<td>-6.17471</td>
<td>0.5876</td>
</tr>
<tr>
<td>H</td>
<td>4.03615</td>
<td>-1.03658</td>
<td>-1.74593</td>
</tr>
<tr>
<td>H</td>
<td>0.36296</td>
<td>-2.20385</td>
<td>0.49203</td>
</tr>
<tr>
<td>H</td>
<td>0.15501</td>
<td>3.73238</td>
<td>3.31209</td>
</tr>
<tr>
<td>H</td>
<td>6.60038</td>
<td>-3.91192</td>
<td>-0.69719</td>
</tr>
<tr>
<td>H</td>
<td>-3.3146</td>
<td>-6.21267</td>
<td>0.24814</td>
</tr>
<tr>
<td>H</td>
<td>-6.49147</td>
<td>3.15585</td>
<td>-1.34828</td>
</tr>
<tr>
<td>H</td>
<td>2.77015</td>
<td>3.51642</td>
<td>2.86288</td>
</tr>
<tr>
<td>H</td>
<td>-7.08742</td>
<td>0.77412</td>
<td>-0.94115</td>
</tr>
<tr>
<td>H</td>
<td>4.25357</td>
<td>-4.94367</td>
<td>-0.20213</td>
</tr>
<tr>
<td>H</td>
<td>-4.03995</td>
<td>-2.45489</td>
<td>0.08097</td>
</tr>
</tbody>
</table>

SCF Done: E(RM06) = -1979.63108000 A.U. after 9 cycles

5f(Möbius [38]^{2^+}T^R_{BCP})

<table>
<thead>
<tr>
<th>Element</th>
<th>x1</th>
<th>y1</th>
<th>z1</th>
<th>x2</th>
<th>y2</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7.51937</td>
<td>0.39255</td>
<td>-0.38933</td>
<td>C</td>
<td>8.35695</td>
<td>1.23579</td>
</tr>
<tr>
<td>C</td>
<td>7.58957</td>
<td>2.23064</td>
<td>-1.71918</td>
<td>C</td>
<td>6.23657</td>
<td>2.04741</td>
</tr>
<tr>
<td>C</td>
<td>5.13751</td>
<td>2.83163</td>
<td>-1.48</td>
<td>C</td>
<td>3.8212</td>
<td>2.47808</td>
</tr>
<tr>
<td>C</td>
<td>3.25205</td>
<td>1.2162</td>
<td>-0.82643</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCF Done: E(RM06) = -1979.63647973 A.U. after 10 cycles

5g (Twisted-Hückel [38]²1T₂\(\Delta\))

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-6.29652</td>
<td>1.884</td>
<td>1.14427</td>
</tr>
<tr>
<td>C</td>
<td>-6.2562</td>
<td>3.26815</td>
<td>1.44569</td>
</tr>
<tr>
<td>C</td>
<td>-4.94946</td>
<td>3.62505</td>
<td>1.66492</td>
</tr>
<tr>
<td>C</td>
<td>-4.13573</td>
<td>2.46611</td>
<td>1.5542</td>
</tr>
<tr>
<td>C</td>
<td>-2.76427</td>
<td>2.39849</td>
<td>1.74512</td>
</tr>
<tr>
<td>C</td>
<td>-1.91145</td>
<td>1.29549</td>
<td>1.64679</td>
</tr>
<tr>
<td>C</td>
<td>-2.12234</td>
<td>-0.0836</td>
<td>1.35839</td>
</tr>
<tr>
<td>C</td>
<td>-0.9183</td>
<td>-0.739</td>
<td>1.44684</td>
</tr>
<tr>
<td>C</td>
<td>0.08997</td>
<td>0.20921</td>
<td>1.77176</td>
</tr>
<tr>
<td>C</td>
<td>1.47607</td>
<td>0.10315</td>
<td>1.89052</td>
</tr>
<tr>
<td>C</td>
<td>2.22472</td>
<td>-1.06861</td>
<td>1.87663</td>
</tr>
<tr>
<td>C</td>
<td>1.86522</td>
<td>-2.4395</td>
<td>1.99348</td>
</tr>
<tr>
<td>C</td>
<td>3.01161</td>
<td>-3.1961</td>
<td>1.97507</td>
</tr>
<tr>
<td>C</td>
<td>4.12146</td>
<td>-2.33265</td>
<td>1.79228</td>
</tr>
<tr>
<td>C</td>
<td>5.45321</td>
<td>-2.67848</td>
<td>1.58883</td>
</tr>
<tr>
<td>C</td>
<td>6.4265</td>
<td>-1.87005</td>
<td>1.00605</td>
</tr>
<tr>
<td>N</td>
<td>6.16823</td>
<td>-0.66494</td>
<td>0.38896</td>
</tr>
<tr>
<td>C</td>
<td>7.3262</td>
<td>-0.1185</td>
<td>-0.11593</td>
</tr>
<tr>
<td>C</td>
<td>7.38772</td>
<td>1.11479</td>
<td>-0.76637</td>
</tr>
<tr>
<td>C</td>
<td>6.29652</td>
<td>1.88394</td>
<td>-1.14436</td>
</tr>
<tr>
<td>C</td>
<td>6.2562</td>
<td>3.26808</td>
<td>-1.44583</td>
</tr>
<tr>
<td>C</td>
<td>4.94945</td>
<td>3.62498</td>
<td>-1.66505</td>
</tr>
<tr>
<td>C</td>
<td>4.13573</td>
<td>2.46605</td>
<td>-1.55427</td>
</tr>
<tr>
<td>C</td>
<td>2.76427</td>
<td>2.39842</td>
<td>-1.74518</td>
</tr>
<tr>
<td>C</td>
<td>1.91146</td>
<td>1.29541</td>
<td>-1.64679</td>
</tr>
<tr>
<td>C</td>
<td>2.12239</td>
<td>-0.0836</td>
<td>-1.35836</td>
</tr>
<tr>
<td>C</td>
<td>0.91834</td>
<td>-0.73908</td>
<td>-1.44671</td>
</tr>
<tr>
<td>C</td>
<td>-0.08994</td>
<td>0.20909</td>
<td>-1.77172</td>
</tr>
<tr>
<td>C</td>
<td>-1.47604</td>
<td>0.10301</td>
<td>-1.89049</td>
</tr>
<tr>
<td>C</td>
<td>-2.2247</td>
<td>-1.06874</td>
<td>-1.87657</td>
</tr>
<tr>
<td>C</td>
<td>-1.86524</td>
<td>-2.43964</td>
<td>-1.99341</td>
</tr>
<tr>
<td>C</td>
<td>-3.01164</td>
<td>-3.19623</td>
<td>-1.97495</td>
</tr>
<tr>
<td>C</td>
<td>-4.12147</td>
<td>-2.33274</td>
<td>-1.79222</td>
</tr>
<tr>
<td>C</td>
<td>-5.45324</td>
<td>-2.67855</td>
<td>-1.58876</td>
</tr>
<tr>
<td>C</td>
<td>-6.42652</td>
<td>-1.87008</td>
<td>-1.00602</td>
</tr>
<tr>
<td>N</td>
<td>-6.16824</td>
<td>-0.66495</td>
<td>-0.38898</td>
</tr>
<tr>
<td>C</td>
<td>-7.32621</td>
<td>-0.11848</td>
<td>0.1159</td>
</tr>
<tr>
<td>C</td>
<td>-7.38772</td>
<td>1.11483</td>
<td>0.7663</td>
</tr>
<tr>
<td>N</td>
<td>-4.97464</td>
<td>1.4155</td>
<td>1.19149</td>
</tr>
<tr>
<td>N</td>
<td>-0.5576</td>
<td>1.42191</td>
<td>1.87174</td>
</tr>
<tr>
<td>N</td>
<td>3.60679</td>
<td>-1.04194</td>
<td>1.72715</td>
</tr>
<tr>
<td>C</td>
<td>7.82303</td>
<td>-2.09818</td>
<td>0.8654</td>
</tr>
</tbody>
</table>
SCF Done: E(RM06) = -1979.64782513 A.U. after 7 cycles

5h (Twisted-Hückel [38]^2*72c.0)

C 7.30984 0.0081 0.10072
C 8.37455 -0.63506 0.77528
C 7.86782 -1.71423 1.46792
C 6.4688 -1.74723 1.27395
C 5.49717 -2.61089 1.77683
C 4.1367 -2.32073 1.81775
C 3.03754 -3.17975 2.08701
C 1.88299 -2.4383 2.0451
C 2.22689 -1.07875 1.78967
C 1.47803 0.09319 1.7541
C 0.88824 0.20301 1.72729
C -0.94317 -0.75729 1.53648
C -2.15188 -0.10775 1.55521
C -1.91877 1.27976 1.78956
C -2.7884 2.33671 2.06657
C -4.17281 2.35187 1.94735
N -4.93506 1.43158 1.24485
<table>
<thead>
<tr>
<th>Atoms</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-6.28438</td>
<td>1.76264</td>
<td>1.34958</td>
</tr>
<tr>
<td>C</td>
<td>-7.35155</td>
<td>1.11469</td>
<td>0.74218</td>
</tr>
<tr>
<td>C</td>
<td>-7.30985</td>
<td>0.0081</td>
<td>-0.10066</td>
</tr>
<tr>
<td>C</td>
<td>-8.37456</td>
<td>-0.63502</td>
<td>-0.77526</td>
</tr>
<tr>
<td>C</td>
<td>-7.86782</td>
<td>-1.71412</td>
<td>-1.468</td>
</tr>
<tr>
<td>C</td>
<td>-6.46879</td>
<td>-1.7471</td>
<td>-1.27405</td>
</tr>
<tr>
<td>C</td>
<td>-5.49715</td>
<td>-2.61071</td>
<td>-1.77702</td>
</tr>
<tr>
<td>C</td>
<td>-4.13669</td>
<td>-2.32052</td>
<td>-1.81794</td>
</tr>
<tr>
<td>C</td>
<td>-3.03753</td>
<td>-3.1795</td>
<td>-2.08731</td>
</tr>
<tr>
<td>C</td>
<td>-1.88299</td>
<td>-2.43804</td>
<td>-2.04535</td>
</tr>
<tr>
<td>C</td>
<td>-2.2269</td>
<td>-1.07852</td>
<td>-1.78976</td>
</tr>
<tr>
<td>C</td>
<td>-1.47804</td>
<td>0.09342</td>
<td>1.75409</td>
</tr>
<tr>
<td>C</td>
<td>-0.08825</td>
<td>0.20322</td>
<td>-1.72734</td>
</tr>
<tr>
<td>C</td>
<td>0.94315</td>
<td>-0.75712</td>
<td>-1.5367</td>
</tr>
<tr>
<td>C</td>
<td>2.15186</td>
<td>-0.10759</td>
<td>-1.55538</td>
</tr>
<tr>
<td>C</td>
<td>1.91877</td>
<td>1.27996</td>
<td>-1.78952</td>
</tr>
<tr>
<td>C</td>
<td>2.78841</td>
<td>2.33693</td>
<td>-2.06639</td>
</tr>
<tr>
<td>C</td>
<td>4.17282</td>
<td>2.35207</td>
<td>-1.94715</td>
</tr>
<tr>
<td>N</td>
<td>4.93506</td>
<td>1.43172</td>
<td>-1.24472</td>
</tr>
<tr>
<td>C</td>
<td>6.28438</td>
<td>1.76277</td>
<td>-1.34939</td>
</tr>
<tr>
<td>N</td>
<td>7.35154</td>
<td>1.11477</td>
<td>-0.74203</td>
</tr>
<tr>
<td>N</td>
<td>6.14298</td>
<td>-0.66007</td>
<td>0.45843</td>
</tr>
<tr>
<td>N</td>
<td>-0.55006</td>
<td>1.41955</td>
<td>1.85608</td>
</tr>
<tr>
<td>N</td>
<td>3.59783</td>
<td>-1.0609</td>
<td>1.60882</td>
</tr>
<tr>
<td>C</td>
<td>-5.07986</td>
<td>3.26631</td>
<td>2.54674</td>
</tr>
<tr>
<td>C</td>
<td>-6.35413</td>
<td>2.8943</td>
<td>2.20659</td>
</tr>
<tr>
<td>N</td>
<td>-6.14298</td>
<td>0.66</td>
<td>-0.45846</td>
</tr>
<tr>
<td>N</td>
<td>-3.59783</td>
<td>-1.06071</td>
<td>-1.60886</td>
</tr>
<tr>
<td>N</td>
<td>0.55006</td>
<td>1.41977</td>
<td>-1.856</td>
</tr>
<tr>
<td>C</td>
<td>5.07989</td>
<td>3.26657</td>
<td>-2.54643</td>
</tr>
<tr>
<td>C</td>
<td>6.35415</td>
<td>2.89451</td>
<td>-2.20629</td>
</tr>
<tr>
<td>H</td>
<td>-0.78792</td>
<td>-1.81395</td>
<td>1.36144</td>
</tr>
<tr>
<td>H</td>
<td>9.40437</td>
<td>-0.30084</td>
<td>0.75174</td>
</tr>
<tr>
<td>H</td>
<td>8.41675</td>
<td>-2.39695</td>
<td>2.10441</td>
</tr>
<tr>
<td>H</td>
<td>3.12619</td>
<td>-4.24171</td>
<td>2.27962</td>
</tr>
<tr>
<td>H</td>
<td>0.88391</td>
<td>-2.80226</td>
<td>2.24298</td>
</tr>
<tr>
<td>H</td>
<td>-4.78485</td>
<td>4.07667</td>
<td>3.20145</td>
</tr>
<tr>
<td>H</td>
<td>-7.28094</td>
<td>3.3522</td>
<td>2.5291</td>
</tr>
<tr>
<td>H</td>
<td>-9.40438</td>
<td>-0.30082</td>
<td>-0.75167</td>
</tr>
<tr>
<td>H</td>
<td>-8.41675</td>
<td>-2.39679</td>
<td>-2.10427</td>
</tr>
<tr>
<td>H</td>
<td>-3.12617</td>
<td>-4.24144</td>
<td>-2.28004</td>
</tr>
<tr>
<td>H</td>
<td>-0.88391</td>
<td>-2.80197</td>
<td>-2.2433</td>
</tr>
<tr>
<td>H</td>
<td>0.78789</td>
<td>-1.8138</td>
<td>-1.36179</td>
</tr>
<tr>
<td>H</td>
<td>4.78489</td>
<td>4.0777</td>
<td>-3.20106</td>
</tr>
<tr>
<td>H</td>
<td>7.28097</td>
<td>3.35244</td>
<td>-2.52873</td>
</tr>
<tr>
<td>H</td>
<td>-0.08262</td>
<td>2.28065</td>
<td>2.10215</td>
</tr>
<tr>
<td>H</td>
<td>0.08262</td>
<td>2.28091</td>
<td>-2.10195</td>
</tr>
<tr>
<td>H</td>
<td>-5.82067</td>
<td>-3.56543</td>
<td>-2.18306</td>
</tr>
<tr>
<td>H</td>
<td>-8.33556</td>
<td>1.53021</td>
<td>0.94518</td>
</tr>
<tr>
<td>H</td>
<td>-2.35186</td>
<td>3.24117</td>
<td>2.48878</td>
</tr>
<tr>
<td>H</td>
<td>2.35188</td>
<td>3.24145</td>
<td>2.48849</td>
</tr>
<tr>
<td>H</td>
<td>-2.04002</td>
<td>1.02974</td>
<td>-1.72484</td>
</tr>
<tr>
<td>H</td>
<td>8.33554</td>
<td>1.53031</td>
<td>-0.94496</td>
</tr>
<tr>
<td>H</td>
<td>5.82069</td>
<td>-3.56565</td>
<td>2.18277</td>
</tr>
<tr>
<td>H</td>
<td>2.04001</td>
<td>1.02951</td>
<td>1.72499</td>
</tr>
<tr>
<td>H</td>
<td>3.1285</td>
<td>-0.56864</td>
<td>-1.47762</td>
</tr>
<tr>
<td>H</td>
<td>5.41114</td>
<td>-0.79637</td>
<td>-0.23014</td>
</tr>
<tr>
<td>H</td>
<td>-3.12852</td>
<td>-0.56877</td>
<td>1.47736</td>
</tr>
<tr>
<td>H</td>
<td>-5.41111</td>
<td>-0.79632</td>
<td>0.23007</td>
</tr>
<tr>
<td>H</td>
<td>4.15976</td>
<td>-0.22407</td>
<td>1.70351</td>
</tr>
</tbody>
</table>
H -4.15978 -0.22387 -1.70343
H 4.54826 0.95141 -0.44448
H -4.54829 0.95134 0.44456

SCF Done: E(RM06) = -1979.64484814 A.U. after 7 cycles

Si (Twisted-Hückel [38]±2T_{2u})

C -5.303 -2.09145 -0.99202
C -5.53775 -3.33211 -1.64335
C -4.33735 -3.84487 -2.05618
C -3.31436 -2.92795 -1.70149
C -1.95092 -3.06393 -1.90768
C -0.97632 -2.07643 -1.77017
C 0.42953 -2.24083 -1.71439
C 1.00415 -0.99903 -1.57573
C -0.02353 -0.01971 -1.5692
C -0.00932 1.37188 -1.52206
C 1.07841 2.22825 -1.40293
C 1.02778 3.64692 -1.37862
C 2.31103 4.12744 -1.28283
C 3.19381 3.02176 -1.21852
C 4.58101 3.03067 -1.18805
C 5.4293 1.95511 -0.94648
N 5.04573 0.72585 -0.40235
C 6.18134 -0.06152 -0.23212
C 6.27049 -1.30328 0.38867
C 5.30301 -2.09146 0.99195
C 5.53779 -3.33213 1.64327
C 4.3374 -3.84491 2.05611
C 3.3144 -2.92801 1.70144
C 1.95095 -3.06401 1.90765
C 0.97633 -2.07653 1.77017
C -0.42951 -2.24095 1.71441
C -1.00415 -0.99916 1.57576
C 0.02352 -0.01981 1.56924
C 0.00929 1.37177 1.52211
C -1.07843 2.22815 1.403
C -1.02778 3.64682 1.3787
C -2.31103 4.12736 1.28291
C -3.19382 3.02169 1.21858
C -4.58102 3.03063 1.18808
C -5.42932 1.95508 0.94648
N -5.04574 0.72582 0.40234
C -6.18135 -0.06154 0.23208
C -6.2705 -1.30329 -0.38873
N -3.93751 -1.83521 -1.09222
N 2.40692 1.86935 -1.23441
N -1.21905 -0.72299 -1.64346
C 6.81933 1.88543 -1.19756
N 1.21905 -0.72308 1.64349
C 7.26945 0.65518 -0.78861
N 3.93751 -1.83527 1.09216
N -2.40695 1.86927 1.23447
C -6.81935 1.8854 1.19753
C -7.26947 0.65515 0.78857
H -6.52101 -3.76375 -1.78393
H -4.16611 -4.76703 -2.59722
H 0.93391 -3.19864 -1.75354
H 2.06759 -0.80782 -1.49816
H 0.11069 4.22078 -1.43998
H 2.62735 5.16237 -1.24519
H 7.39317 2.67332 -1.66909
H 8.27728 0.26576 -0.86154
H 6.52106 -3.76375 1.78384
H 4.16619 -4.76707 2.59714
H -0.93388 -3.19877 1.75355
H -2.0676 -0.80797 1.49819
H -0.11069 4.22067 1.44009
H -2.62733 5.16233 1.24528
H -7.39319 2.67328 1.66907
H -8.2773 0.26574 0.86148
H -3.44123 -1.31223 -0.38083
H 2.78621 1.01463 -1.62095
H 3.44122 -1.31230 0.38077
H -2.78626 1.01455 1.62098
H -5.06276 3.98255 1.39915
H -7.27543 -1.71886 -0.42026
H 1.60535 -4.04679 2.21903
H -1.60529 -4.04669 -2.21906
H 5.06275 3.98259 -1.39913
H -0.97351 1.87682 -1.58885
H 0.97348 1.87671 1.58891
H 7.27543 -1.71884 0.42019
H -2.08003 -0.29718 -1.96339
H 2.08001 -0.29726 1.96341
H 4.27462 0.69307 0.25392
H -4.27462 0.69304 -0.25392

SCF Done: E(RM06) = -1979.65223320 A.U. after 18 cycles