Supplementary materials

Ultrafast Carrier Dynamics of Carbon Nanodots in Different pH Environments

Laizhi Sui \(^1,2\), Wuwei Jin \(^1,3\), Suyu Li \(^1,2\), Dunli Liu \(^1,2\), Yuanfei Jiang \(^1,2\), Anmin Chen \(^1,2*\), Hang Liu \(^1,2\), Ying Shi \(^1,2\), Dajun Ding \(^1,2\), Mingxing Jin \(^1,2*\)

1.Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun,130012,China

2.Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), 2699 Qianjin Street, Changchun 130012, China

3.College of Mathematics, Jilin University, 2699 Qianjin Street, Changchun,130012,China

Corresponding authors: amchen@jlu.edu.cn and mxjin@jlu.edu.cn

Table of contents in Supporting Information:

1. Fig. S1. Transmission electron microscopy graph of C-dots
2. Fig. S2. 3D PL intensities as a function of excitation and emission wavelength of C-dots dispersion at pH (a) 1.5 (b) 4.0 (c) 7.0 (d) 8.0 (e) 9.0.
3. Fig. S3. Normalized EADS comparison of C-dots at pH 1.5, 7.0, 9.0 by global fitting (a) the first component (b) the second component (c) the third component (d) the fourth component
Fig. S1. Transmission electron microscopy graph of C-dots

Fig. S2. 3D PL intensities as a function of excitation and emission wavelength of C-dots dispersion at pH (a) 1.5 (b) 4.0 (c) 7.0 (d) 8.0 (e) 9.0.
Fig. S3. Normalized EADS comparison of C-dots at pH 1.5, 7.0, 9.0 by global fitting
(a) the first component (b) the second component (c) the third component (d) the fourth component