Supplementary Information For

Role of S and Se atoms on the microstructural properties of kesterite Cu$_2$ZnSn(S$_x$Se$_{1-x}$)$_4$ thin film solar cells

Mirjana Dimitrievskaa*, Andrew Fairbrothera, Rene Gunderb, Galina Gurievab, Haibing Xiea, Edgardo Saucedoa, Alejandro Pérez-Rodrígueza,c, Victor Izquierdo-Rocaa and Susan Schorrb,d

a) Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona, Spain.
b) Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
c) IN2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain.
d) Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12249 Berlin, Germany.

* Contact email: mdimitrievska@irec.cat; mira.dimitrievska@gmail.com

Figure S1. Schematic diagram of the X-ray diffraction through the sample in grazing incidence geometry. Based on the attenuation law, the incident beam I_0 after traveling through the sample and being reflected will be reduced to $I_{zd} = I_0 \cdot e^{-\mu (L_1 + L_2)} = I_0 \cdot e^{-\mu \left(\frac{z}{\sin \alpha_i} + \frac{z}{\sin (2\theta - \alpha_i)} \right)}$. If the penetration depth z is defined as the depth at which the intensity of the X-rays is reduced to 1/e (about 37%) of its original value, then based on the ratio $I_0 = e \cdot I_{zd}$, the penetration depth can be calculated as $z = \frac{1}{\mu} \left(\frac{1}{\sin \alpha_i} + \frac{1}{\sin (2\theta - \alpha_i)} \right)^{-1}$.
Figure S2. Le Bail fits of the XRD patterns measured with 0.5, 1, 2 and 5° incidence angles of two representative CZTSSe samples with (a) \([S] / ([S] + [Se]) = 0.27\) and (b) \([S] / ([S] + [Se]) = 0.65\) anion compositions.
Figure S3. Raman spectra of front, back and substrate for two representative CZTSSe samples measured with 532 nm excitation wavelength.