Supplementary information:
Adsorption and reaction of H$_2$S on Cu(110) studied with scanning tunneling microscopy

Akitoshi Shiotari,1,\textasciitilde Hiroshi Okuyama,a,* Shinichiro Hatta,a Tetsuya Aruga a and Ikutaro Hamada b

a Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
* E-mail: hokuyama@kuchem.kyoto-u.ac.jp
b International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
\textasciitilde Present address: Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan.
Fig. S1: (a) and (b) STM images of β-SH on Cu(110) ($V = 30$ mV, $I = 0.5$ nA). The yellow arrows indicate the direction of the S–H axis. (a) 54 Å × 54 Å. (b) 76 Å × 76 Å. (c) Simulated STM topography of SH on the short bridge site at a charge density of 6.748×10^{-8} e/A3 at $V = 50$ mV. A small (large) round indicates the location of the H (S) atom.

1 STM images of β-SH

Fig. S1a and b show typical STM images of SH groups adsorbed at the short-bridge site (β-SH) on Cu(110). Two equivalent configurations of β-SH can be discriminated by the location of faint depressions. The upward (downward) arrows in Fig. S1a and b represent the configuration with the depressions displaced in the [001] ([00 $\bar{1}$]) direction. Fig. S1c shows a simulated STM image of β-SH, which were performed using the Tersoff-Hamann theory.1 The topography shows an elliptic protrusion with side depressions, well reproducing the experimental image. Based on the simulation, we tentatively assign to the upward-arrow (downward-arrow) configuration to SH with the axis along to the [00 $\bar{1}$] ([001]) direction.
Fig. S2: Potential energy surfaces for the flip motion of SH adsorbed at the (a) long-bridge site and (b) short-bridge site. The geometries along the reaction pathways are shown in the lower panels.

2 Flip barriers of α-SH and β-SH

We calculated potential energy surfaces for the flip motion of SH groups on Cu(110). Fig. S2a and b show the energy surfaces of SH adsorbed at the long-bridge site and short-bridge site, respectively. The reaction coordinate is the coordinate of hydrogen atom along the [1\overline{1}0] ([001]) direction for SH at the long-bridge (short-bridge) site. The activation barrier of SH at the long-bridge (short-bridge) site is estimated to be 337 (647) meV.
3 Fitting function for the yield of H$_2$O–SH and H$_2$O

The reaction yield curves for the intermediate complex (H$_2$O–SH) and water monomer in Fig. 5e are analyzed by a recently proposed analytical modeling.2,3 When the reaction is induced via single-electron process, the yield $Y(V)$ is defined by

$$Y(V) = \frac{R(V)}{I(V)/e},$$

where $R(V)$ is the reaction rate and $I(V)$ is the electrical current through the adsorbate level at an applied voltage V.

Now we use the extendend wide-band limit (EWBL) modeling, which has been applied to fitting yield curves of several reactions.4–10 In this modeling, the yield is described as

$$Y(V) = K_{\text{eff}} \frac{1}{|eV|} \int_{0}^{\left|eV\right|/\hbar} \rho_{\text{ph}}(\omega) \left(|eV| - \hbar \omega \right) d\omega,$$

where K_{eff} is an effective prefactor determined by the elementary process2,3 and where $\rho_{\text{ph}}(\omega)$ is the vibrational density of states (VDOS).

The VDOS, which is centered around a characteristic vibrational energy $\hbar \Omega$, can be represented by the Dirac delta function, Gaussian distribution, or Lorentzian distribution.3,11 Here we use a Gaussian distribution since this has successfully reproduced the experimental yield curves for water-related adsorbates on Cu(110).3,5–7 Then $\rho_{\text{ph}}(\omega)$ is given by

$$\rho_{\text{ph}}(\omega) = \frac{1}{\sigma_{\text{ph}} \sqrt{2\pi}} \left\{ \frac{1}{\sqrt{2\sigma_{\text{ph}}}} \left[\exp\left(-\left(\frac{\omega - \Omega}{\sqrt{2\sigma_{\text{ph}}}} \right)^2 \right) - \exp\left(-\left(\frac{\omega + \Omega}{\sqrt{2\sigma_{\text{ph}}}} \right)^2 \right) \right] \right\},$$

where $\text{erf}(x)$ is the error function, i.e.,

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^2) \ dt.$$

Equation 3 takes into account all broadening effects in a standard deviation σ_{ph}.

Using Equation 3, the yield reads as

$$Y(V) = \frac{K_{\text{eff}}}{|eV| \text{erf}\left(\frac{\Omega}{\sqrt{2\sigma_{\text{ph}}}} \right)} \left\{ \frac{|eV| \text{erf}\left(\frac{\Omega}{\sqrt{2\sigma_{\text{ph}}}} \right)}{\sqrt{2\pi}} \right\} + \frac{\hbar \sigma_{\text{ph}}}{\sqrt{2\pi}} \left\{ \exp\left(-\left(\frac{|eV| - \hbar \Omega}{\sqrt{2\sigma_{\text{ph}}}} \right)^2 \right) - \exp\left(-\left(\frac{|eV| + \hbar \Omega}{\sqrt{2\sigma_{\text{ph}}}} \right)^2 \right) \right\}$$

$$+ \frac{|eV| - \hbar \Omega}{2} \text{erf}\left(\frac{|eV| - \hbar \Omega}{\sqrt{2\sigma_{\text{ph}}}} \right) - \frac{|eV| + \hbar \Omega}{2} \text{erf}\left(\frac{|eV| + \hbar \Omega}{\sqrt{2\sigma_{\text{ph}}}} \right).$$

4
By using Equations 2 and 5, the experimental yield curves can be fitted, and thus the optimized paramters K_{eff}, $h\Omega$, and $h\sigma_{\text{ph}}$ can be obtained.

The hopping motion of an isolated H$_2$O monomer on Cu(110) was analyzed previously. At lower bias (below \sim40 mV), the rate is constant ($R_0 = 0.1$ s$^{-1}$), indicating that this hopping motion is induced thermally and independent from vibrational modes. Above \sim40 mV, on the other hand, the hopping rate is increased by vibrational excitation via single electron process. Thus the yield per electron $Y_{\text{H}_2\text{O}}(V)$ is described after removing R_0 contribution:

$$Y_{\text{H}_2\text{O}}(V) = \frac{R_{\text{H}_2\text{O}}(V) - R_0}{I_{\text{H}_2\text{O}}(V)/e}. \quad (6)$$

By using Equation 6, the hopping yield of H$_2$O is obtained (blue dots in Fig. 5e). For the flip rate of the H$_2$O–SH complex, in contrast, the intrinsic motion can be ignored, i.e.,

$$Y_{\text{H}_2\text{O}–\text{SH}}(V) = \frac{R_{\text{H}_2\text{O}–\text{SH}}(V)}{I_{\text{H}_2\text{O}–\text{SH}}(V)/e}, \quad (7)$$

which leads to the flipping yield (black dots in Fig. 5e).

By using Equation 5, we calculate the fitting curves of $Y_{\text{H}_2\text{O}–\text{SH}}(V)$ and $Y_{\text{H}_2\text{O}}(V)$ as shown by a black and blue curve in Fig. 5e, respectively. Then the following optimized parameters are obtained: $K_{\text{eff}} = (3.2 \pm 0.1) \times 10^{-7} \left[(4 \pm 1) \times 10^{-7}\right]$, $h\Omega = 70.3 \pm 0.5$ meV (60 \pm 5 meV), and $h\sigma_{\text{ph}} = 11.6 \pm 0.2$ meV (11 \pm 3 meV) for the complex (H$_2$O). Similarity of the parameters between the intermediate complex and water monomer suggests that both reactions are induced by the identical vibrational mode. This $h\Omega$ is related to the stretch mode between H$_2$O and the Cu substrate.12

References

