Elucidation of adsorption processes at Pt(331) model electrocatalysts in acidic aqueous media

Marcus D. Pohl, Victor Colic, Daniel Scieszka, and Aliaksandr S. Bandarenka

The Pt(331) surface has been observed relatively long as the most active pure metal electrocatalyst for the oxygen reduction reaction (ORR) in acidic media. Its activity is often higher than that known for the ORR Pt-based alloys, being comparable with the most active Pt-Ni(111), Pt-Y or Pt-Gd, and being more active than e.g., polycrystalline Pt-Ni. Multiple active sites at this surface offer adsorption energies which are close to the optimal ones with respect to the main ORR intermediates; nevertheless, the exact location of these sites is still not clear. Taking into the account the unique surface geometry of Pt(331), some adsorbates (including some oxygenated ORR-intermediates) should also contribute to the electronic structure of the neighbouring catalytic centres. However, the experimental elucidation of the specific adsorption of oxygenated species at this surface appears to be a non-trivial task. Such information holds the keys to the understanding of the high activity of this material and would enable rational design of nanostructured ORR catalysts even without alloying. In this work, the electrified Pt(331)/electrolyte interface has been characterised using cyclic voltammetry (CVs) combined with potentialdynamic electrochemical impedance spectroscopy (PDEIS) in 0.1 M HClO₄ solutions. The systems were studied within the potential region between 0.05 V and 1.0 V vs RHE, where the adsorption of *H, *OH and *O species is possible in both O₂-free and O₂-saturated electrolytes. Our CV- and PDEIS-results support the hypothesis that in contrast to Pt(111), many Pt(331) surface sites are likely blocked with *O species at the benchmark for polymer electrolyte membrane fuel cells potential 0.9 V (RHE). We propose a model illustrated by simplified adsorbate structures at different electrode potentials, which is, however, able to explain the voltammetric and impedance data, and which is in good agreement with previously reported electrocatalytic measurements.

Introduction

The oxygen reduction reaction (ORR) is one of the fundamental reactions for the realization of a sustainable provision of renewable energy. It is, for instance, of extreme importance for so-called polymer electrolyte membrane fuel cells (PEMFCs) and platinum catalysts are used to take place at the cathode and largely limits the fuel cells’ performance. This is mainly because of the relatively slow kinetics of the ORR, even if state-of-the-art platinum cathode electro-catalysts are used. The ORR in PEMFCs normally proceeds through at least three adsorbed intermediates: *OOH, *O, *OH towards molecular water (* denotes the adsorbed species). The latter species are localized at specific catalytic centers on the surface. The nature, structure, electronic properties and relative surface abundance of these sites determine the observed activity, selectivity and stability of the catalytic materials. If these specific centers are identified, recent methodological advances and synthetic innovations would likely enable relatively easy optimizations of electrocatalysts. Alternatively, one would be able to create nanostructured materials with maximal density of these centers at the surface. Therefore, single crystal surfaces, which offer an methodologically easier way of identification of active sites, are indispensable model objects on the way to a better understanding and optimization of nanostructured electrocatalysts.

Platinum is one of only few materials known offering a good balance between high ORR activity, required selectivity, and stability in aggressive acidic media necessary for modern PEMFCs. According to state-of-the-art models, the high activity of Pt is possible due to the fact that adsorption energies of the main intermediates (mentioned above) at the surface are quite close to the optimum. These models also suggest that the most active sites are located at the Pt(111) facets, which bind e.g., *OH just ~0.1 eV stronger than at the optimal ones. The active sites themselves can be roughly localized and described as “on-top” adsorption sites at the Pt(111) surface. These models recently facilitated a discovery of a series of very promising Pt-alloys and nanostructured materials to catalyze the ORR. However, there are some highly active materials which seemingly contradict the above-mentioned theories.

a Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
b NanoSystems Initiative Munich (NIM), Schellingstraße 4, 80799 Munich, Germany
* Corresponding author, e-mail address: bandarenka@ph.tum.de
Electronic Supplementary Information (ESI) available [further experimental details, and supporting experimental data]. See DOI: 10.1039/x0xx00000x
Remarkably, the most active surface towards the ORR known to date is Pt(331), which can also be designated as Pt[3(111)x(111)], and belongs to the family of these “unusual” catalysts. The ORR activity of Pt(331) is ~4.5 times better than that of Pt(111) at the PEMFC-benchmark electrode potential of 0.9 V(RHE), being more active than multiple Pt-alloy electrocatalysts. While the fcc(331) is known as a surface with an extremely high density of steps, it seems logical that the defects themselves and not the (111)-terraces are the most active sites, similar to some other electrocatalytic reactions. This contradicts the finding that a surface with even higher density of steps, Pt(110), shows an ORR activity similar to that measured for Pt(111). The origin of these surprising experimental facts is still under debate. Several theoretical models have been elaborated based on explicit density functional theory (DFT) calculations (see e.g.). Recently, it has been suggested, that steps at platinum surfaces should likely be blocked with oxygenated species at “very early” electrode potentials. Most probably the blockage already occurs after the desorption of underpotentially deposited hydrogen species in the range between ~0.05 V and ~0.4 V (RHE) in O2-free acidic electrolytes, although these assumptions remain somewhat controversial. Based on the former hypothesis and experimental data, it has been demonstrated that the observed trends in activities for Pt(n(111)x(111)) and Pt(n(111)x(100)) can be explained within the existing theoretical framework. This is further supported by the hypothesis that the active sites are located at the (111) terraces. The (111) terraces of Pt(331) indeed provide almost optimal binding energy with respect to the ORR intermediates. However, it is not clear why the electronic structure at these terraces is so different compared to Pt(111). One of the possible explanations is that some adsorbates (even some oxygenated ORR-intermediates) likely contribute to the electronic structure of the neighbouring catalytic centres.

Nevertheless, the exact adsorbate structures developing at different electrode potentials relevant for PEMFC applications at Pt(331) surfaces are still not known. The main difficulty is that it is so far impossible to visualize these structures in-situ, in liquid electrolytes or under elevated temperatures using e.g. electrochemical scanning tunneling microscopy. One of the main reasons is that the intermediate species (for instance *OH) are mobile and are basically a part of the first H2O layer on the electrode. However, using other experimental techniques and some reference points, provided by numerous quantum chemistry calculations available in the literature, it might still be possible to develop a better understanding of these structures and their role in the ORR electrocatalysis.

In this work we propose a model employing simplified adsorbate structures at different electrode potentials at the Pt(331) surface based on voltammetric and potentiodynamic electrochemical impedance spectroscopy data obtained in O2-free and O2-saturated HClO4 electrolytes. This model is capable of explaining the experimental results, and is in good agreement with previously reported electrocatalytic measurements.

Experimental

A bead-type Pt(331) crystal (icryst, Jülich, Germany) and Pt(111) single crystal (5 mm in diameter, Mateck, Jülich, Germany) were used for all experiments. The crystals were flame-annealed using a butane-propane flame and cooled down in a 1000 ppm CO (4.7, Air Liquid, Germany) mixture with Ar (5.0, Air Liquid, Germany). The status of the surface was assessed by characteristic voltammograms obtained in Ar-saturated HClO4 electrolytes.

The electrochemical cell used in this work is described in detail in the supporting information. Before the experiments, all glassware was cleaned with a 3:1 mixture of H2SO4 and H2O2 (both Suprapur, Merck, Germany) and subsequently rinsed multiple times with ultrapure water from an Ewoqua Ultra Clear 10 TWF 30 UV (Ewoqua, Germany) water purification system. A VSP-300 potentiostat (Bio-Logic, France) was used to control all electrochemical measurements.

The working electrodes were introduced into the electrolytes under potential control at 0.05 V vs RHE. Cyclic voltammetry (CV) was performed using a scan rate of 50 mV/s in Ar-saturated solutions (Ar 5.0, Air Liquid, Germany).

A mercury–mercurous sulfate electrode (MMS) (SI Analytics, Germany) was used as a reference electrode. It was kept in a separate compartment filled with 0.1 M HClO4 and separated from the working electrolyte by an ionically conducting ceramic insert. A polycrystalline Pt-wire was used as a counter electrode. All potentials in this paper are referred to the RHE scale.

0.1 M HClO4 aqueous solutions were used as working electrolytes. They were prepared from 70% HClO4 (Suprapur, Merck, Germany), respectively, by diluting them with ultrapure water.

EIS measurements were performed in O2-free and O2-saturated (O2 5.0, Air Liquid, Germany) 0.1 M HClO4 electrolytes in the frequency range between 30 kHz and 10 Hz and a 10 mV amplitude of the probing signals. Issues related to modeling and fitting of large experimental EIS datasets are reported in detail elsewhere and also presented in the supporting information. The quality of the measured impedance spectra was evaluated using the “linear” and “logarithmic” Kramer–Kronig check procedures.

The output of the fitting procedure was controlled by the root-mean-square deviations and estimated individual parameter errors using the “EIS Data Analysis 1.0” software, in order to ensure the validity of the model and the correctness of the fitting, as described in detail elsewhere.

Results

Cyclic voltammetry experiments

Figure 1A shows typical cyclic voltammograms of Pt(111) and Pt(331) in 0.1 M HClO4. For both electrodes one can
distinguish two regions where pairs of reversible peaks appear. For the Pt(111) electrode, the well-known symmetrical peaks due to hydrogen adsorption and desorption at more negative potentials between ~0.05 V and ~0.4 V are visible. However, Pt(331) reveals different distribution of adsorption energies in that range. At more positive potentials OH-adsorption on Pt(111) manifests itself as a pair of the so-called “butterfly” peaks between ~0.55 V and ~0.9 V with sharp features at ~0.8 V. In contrast, the Pt(331) CVs are featureless in that region, with wide but relatively small peaks. Anodic charges obtained from the integration of both CVs appeared to be approximately similar, ~280 μC cm⁻².

Potentiodynamic impedance spectroscopy experiments

In order to shed further light on the origin of the difference in the adsorption behavior between Pt(111) and Pt(331) electrodes, PDEIS experiments were performed using Pt(331) surfaces. It is well-known that impedance measurements cannot distinguish the double layer capacitance charging and the Faradaic processes in the region between 0.05 V and 0.4 V RHE for Pt(111) electrodes in acid media using the common measurement schemes. Only in some cases it has been possible to do that, e.g. using very high frequencies and special equipment.

However, our impedance analysis (see supporting information, Section S2 for further information about the equivalent circuit) shows that in the case of Pt(331) it is possible to distinguish several Faradaic adsorption processes with different time constants. Figure 2A shows a schematic representation of a physical model (equivalent electric circuit), known for the reversible surface limited adsorption, used in this work (see supporting information for the detailed discussion of this model). It comprises of three branches. The first branch consists of the impedance of the so-called constant phase element (CPE), \(Z_\phi = 1/C_\phi(j\omega)\phi \), where \(C_\phi \) is proportional to the double layer capacitance \(C_{dl} \), and \(\phi \) is the exponent accounting for the frequency dispersion of the double layer (see detailed information related to this parameter in refs [56]). The other two branches consist of the series combination of the resistances of adsorption, \(R_a \), and capacitances of adsorption, \(C_a \). They account for slower adsorption processes with different time constants. An additional resistance was necessary in parallel to the double layer impedance to account for the oxygen reduction reaction in the oxygen saturated electrolyte, similar to the situation described in references [56,71,72] (not shown in Figure 2A). \(R_s \) stands for the uncompensated resistance.

It turned out that the model presented in Figure 2A fits well with all the potentiodynamic impedance spectra obtained in this work. Figure 2 shows typical examples of impedance spectra for Pt(331) electrodes obtained in Ar-saturated and O₂-saturated 0.1 M HClO₄ electrolytes together with the fitting results.

Figure 3 presents the dependences of the parameters of the equivalent circuit (shown in Figure 2A) on the electrode potential, which are of primary importance to elucidate the nature of adsorbates at the electrode surface. Those parameters are the capacitances of adsorption, designated as \(C_j \) (Figure 3A) and \(C_a \) (Figure 3B), as well as \(C_a = C_{dl} \) (Figure 3C) which can be approximated as the double layer capacitance, as \(\phi \) is relatively close to 1. While it is possible to extract additional information from \(\phi(E) \) dependences, we simplify the analysis to maintain the main focus of this work. The adsorption resistances are not considered, as they largely correlate with the respective capacitances and do not provide

Figure 1. (A) Typical cyclic voltammograms of Pt(111) and Pt(331) in 0.1 M HClO₄ and (B) integrated anodic parts of the corresponding voltammograms (corrected for the double layer capacitive current, \(dE/dt = 50 \text{ mV/s} \)).

Integration of the respective anodic voltammetric currents (with the correction for the double layer capacitive current) reveals a difference in the charge of ~30 μC cm⁻². The Pt(331) gives ~190 μC cm⁻² while Pt(111) only gives ~160 μC cm⁻² at the potentials for the anodic processes completed at the more negative potential region (Figure 1B). However, at the key electrode potential of ~0.9 V for PEMFC applications the net
further necessary information for the current study. Therefore, only the adsorption capacitances will be used for the further analysis.

As can be seen in Figure 3A, the adsorption capacitance C_1 demonstrates a well-pronounced peak at ~0.13 V with the value of ca 1500 μF cm$^{-2}$. Integration of the $C_1(E)$ dependence between 0.07 V and 0.4 V gives the charge of ca 60 μC cm$^{-2}$.

Figure 3B shows the dependence of another adsorption capacitance, $C_2(E)$, as the function of the electrode potential. While the shape and the maximal values of this curve are drastically different if compared with $C_1(E)$, the peak position is exactly the same: ~0.13 V. Integration of the $C_2(E)$ between 0.07 V and 0.4 V gives a charge of ~30 μC cm$^{-2}$, as shown in the Figure.

As can be seen in Figure 3A, the adsorption capacitance C_1 demonstrates a well-pronounced peak at ~0.13 V with the value of ca 1500 μF cm$^{-2}$. Integration of the $C_1(E)$ dependence between 0.07 V and 0.4 V gives the charge of ca 60 μC cm$^{-2}$.

Figure 3B shows the dependence of another adsorption capacitance, $C_2(E)$, as the function of the electrode potential. While the shape and the maximal values of this curve are drastically different if compared with $C_1(E)$, the peak position is exactly the same: ~0.13 V. Integration of the $C_2(E)$ between 0.07 V and 0.4 V gives a charge of ~30 μC cm$^{-2}$, as shown in the Figure.

Finally, the “approximate” double layer capacitance demonstrates unusually high values in the potential region between 0.07 V and 0.4 V with the peak at ~0.13 V (Figure 4C). The high values of this parameter are due to the fact that it is not possible to separate some fast H-adsorption/desorption from the double layer response completely. Formal integration of this curve in this potential range gives values which are
slightly above ~110 μC cm⁻². Thus the sum of the charges obtained from PDEIS measurements (60+30+110=200 μC cm⁻²) is very close to the voltammetric charge obtained from the CV in this range (~190 μC cm⁻²). The slight differences are due to the fact that the CV-data were corrected for the background.

However, from the above-presented data there are no direct indications what are the adsorption processes with the adsorption capacitances C₁ and C₂. It is well-accepted that ClO₄⁻ anions cannot be specifically adsorbed in this system. Therefore, C₁ and C₂ can both represent slower adsorption of hydrogen, or alternatively they can both reveal adsorption of *OH at two different types of sites. Finally, one of these capacitances can reveal *OH-adsorption while the other represents the slower adsorption of hydrogen. In order to assign the adsorption capacitances to the specific processes we use the previously documented fact⁵⁶,⁷¹,⁷² that OH-adsorption on Pt is very sensitive to the presence of the dissolved O₂ as *OH is also the intermediate in the ORR. In presence of oxygen the OH-adsorption isotherms are shifted to more negative potentials.

Figure 4 shows how the capacitance peaks change in O₂-saturated 0.1 M HClO₄. As can be seen from Figure 4, in the presence of dissolved oxygen the dependencies of the observed parameters are different. While all three curves look slightly “depressed”, the position of the main peaks in Figure 4A and 4C remain the same. However, the position of the main peak in Figure 4B is shifted by ~40 mV towards more negative potentials. Thus, this peak in the C₂(E) curve is the most sensitive to the presence of the molecular oxygen in the electrolyte.

Discussion

As mentioned above, the working hypothesis of this study is that at stepped Pt surfaces, particularly Pt(331), the steps are blocked with “oxygenated” species at the critical potentials for the PEMFCs operation 0.9 V(RHE) influencing the electronic structure and the performance of the catalytic sites at the (111) facets. The data presented in the previous section in general confirm this hypothesis. It should be noted that adsorption of oxygenated species, e.g. *OH likely starts already at the potentials close to 0.1 V (RHE). The first evidence of this is provided by cyclic voltammetry data. Formally, Pt(331) has approximately the same amount of adsorption sites as Pt(111). The only difference is that steps change the coordination number of some of the surface atoms leading to a non uniform adsorption energy distribution along the surface. However, while it is well known that the maximal charge associated with adsorption/desorption of hydrogen atoms for Pt(111) terraces is ~160 μC cm⁻², the integrated charge in that potential region for Pt(331) is ~30 μC cm⁻² higher, both in perchloric and sulfuric acids. Assuming that specific adsorption of perchlorate anions is unlikely on Pt-surfaces,⁵⁶ this excessive charge can be associated with the specific adsorption/desorption of *OH from water.

PDEIS data support the idea that the excessive charge of ~30 μC cm⁻² is due to adsorption of *OH in the potential range between 0.07 V and 0.4 V. In 0.1 M HClO₄ using impedance analysis it was possible to distinguish at least two adsorption processes other than fast H-adsorption, which is indistinguishable from the double layer response (Figure 3). Surprisingly, the integration of one of the associated capacitance dependences (Figure 3B), namely C₂(E), gives approximately the same charge, ~30 μC cm⁻², which is observed as the additional one in the CV data. Furthermore, under the ORR conditions the peak in C₂(E) is shifted towards more negative potentials (Figure 4B). This behavior is typical in the case of adsorbed *OH as reported earlier,⁵⁶,⁷¹,⁷² as *OH is
also the ORR intermediate. Notably, the positions of the other
peaks, which can therefore be associated with H-
adsorption/desorption, are not affected by the molecular
oxygen as it is not directly involved into these processes
(Figure 3A,C).

Thus, high values of $C_\text{d}(E)$ are associated with a very fast
adsorption of hydrogen, C_1 represents a slower adsorption of
hydrogen at different types of sites and C_2 accounts for the
OH-adsorption.

Based on the obtained data, it is now important to
elucidate possible adsorbate structures, involving *H, $^*O\text{H}$ and
also *O explaining the main impedance and voltammetric
features in all potential regions used in this work. We start
with the most probable structure at the surface of Pt(111)
(Figure 5A). The existence of ordered superstructures
consisting of surface water and adsorbed *H species is
supported by DFT calculations; these, however, we use it for
Pt(331) as the first approximation, as it can be affected by
different coordination at steps on the Pt[3(111)x(111)] surface.

Adsorption sites on the steps of Pt(331) are the “weakest
links” towards oxidation, which is equivalent in this system to
the adsorption of oxygenated species. Interestingly, oxidation of
H$_2$O molecules at steps of every third atom (Figure 6) is
equivalent to the total anodic charge equal to $\sim 187 \mu C cm^{-2}$,
and very close to the charge measured by CV within the
relevant potential region ($\sim 190 \mu C cm^{-2}$). Accordingly, we
hypothesize that structures close to those shown in Figure 6
exist at the potential of ca 0.4 V(RHE).

![Figure 6. Proposed adsorbate structures at Pt(331) electrode surface developing during the oxidation sweep in the potential region between 0.05 V and 0.4 V (RHE), with involving a possible concurrent $^*O\text{H}$ adsorption. Oxidation of the adsorbed hydrogen together with OH-adsorption should give the anodic charge of $\sim 187 \mu C cm^{-2}$](image)

Further oxidation would involve the second row of
platinum atoms on the Pt(111) facets. Again, we hypothesize
that oxidation starts at every third platinum atom as
schematically shown in Figure 7A, leading to the formation
of an OH-layer with simultaneous oxidation of $^*O\text{H}$ at steps to
*O. The formation of the structure shown in Figure 7A
corresponds to the total anodic charge of $\sim 241 \mu C cm^{-2}$.
Interestingly, this charge was obtained by integration of the CV
shown in Figure 1 at the potential of ca 0.8 V (RHE), where the
onset of a new oxidation wave can be seen.

Finally, at the potential of $\sim 0.9 V$, the integrated anodic
charge from the voltammograms is $\sim 280 \mu C cm^{-2}$. This might
be due to the structure shown in Figure 7B, with a slightly increased coverage of *O and $^*O\text{H}$ at the steps and terraces,
respectively.

While the proposed structures presented in Figures 5-7 are
largely hypothetical, as there are unfortunately no
straightforward means to directly visualize the real adsorbate
structures in situ, they can explain CV and PDEIS data with a
high accuracy. Nevertheless, the main result of the combined
CV and PDEIS studies is that $^*O\text{H}$ adsorption at Pt(331) starts
early as 0.1 V (RHE) and that at the potential of 0.9 V, critical
for PEMFC applications, all the steps are indeed blocked with
*O. This provides further evidence that the active sites for the
ORR are located at (111) terraces, which confirms earlier

*Figure 5. Proposed adsorbate structures at Pt(331) electrode surface developing during the oxidation sweep in the potential region between 0.05 V and 0.4 V (RHE), without involving a possible concurrent $^*O\text{H}$ adsorption. Oxidation of the adsorbed hydrogen requires only $\sim 161 \mu C cm^{-2}$.*

*Figure 6. Proposed adsorbate structures at Pt(331) electrode surface during the oxidation sweep in the potential region between 0.05 V and 0.4 V (RHE), with involving a possible concurrent $^*O\text{H}$ adsorption. Oxidation of the adsorbed hydrogen together with OH-adsorption should give the anodic charge of $\sim 187 \mu C cm^{-2}$.*
hypotheses and previous theoretical studies showing that the (111) terraces are responsible for the high activity of many extended Pt surfaces and some “normal shape” convex nanoparticiles. This provides a direct input to the theoretical modelling, which can involve quantum chemistry calculations, as well as to future combined theoretical and experimental studies: adsorbed *O at the surface of non-uniform ORR electrocatalysts with a significant number of under-coordinated sites should be taken into account. Our experiments with Pt(331) surface, where only few types of the “on-top” sites exist, shows that immobile *O at steps likely and largely contribute to the high activity of Pt(331), as each atomic raw meets the atomic raw with the adsorbed *O at (111) terraces (where the active sites should be located). This is the main difference between Pt(111) and Pt(331) surface status at the benchmark potentials close to 0.9V RHE.

![image](image_url)

Figure 7. Proposed adsorbate structures at Pt(331) electrode surface developing at the potentials between 0.8V and 0.9V (RHE)

Conclusions

Combined CV and PDEIS studies confirm that OH-adsorption on the most active Pt ORR electrocatalysts in acidic media, Pt(331), starts as early as ca.0.1V (RHE). At the key electrode potential of 0.9V (RHE) for PEMFC applications, almost all the step sites are blocked by the adsorbed *O. This fact supports the hypothesis that the most active sites for the ORR should be located at the (111) terraces. Moreover, *O should largely contribute to the high activity of the (111) terraces. Further investigations, for instance, explicit calculations using density functional theory are necessary to identify the exact locations and properties of the resulting catalytic sites at the these terraces.

Notes and references

28. D. Li, C. Wang, D.S. Strmcnik, D.V. Tripkovic, X. Sun, Y. Kang, M. Chi, J.D. Snyder, D. van der Vliet, Y. Tsai, V.R. Stamenkovic, S. Sun,