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Figure S1. TEM images of C;N4-rGO-150-WO; 400-26
after photocatalytic test.
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Figure S2. Time course of H,/O; evolution for C3N4-rGO-150-WO; 400-260
loaded with 1 wt% Pt under visible light irradiation (A > 420 nm) at pH = 7.



Typical time courses of the H, evolution by C;N4-rGO composites with TEOA as
sacrificial agent under visible light is shown in Fig. S2. It is obviously to note that the
C3N4-rGO-250 and C;3;N4-rGO-150 showed higher activity than pure C;N4 and C3Ny-
rGO-150 held the best among the five samples. The composite with the highest
graphene content showed the lowest performance, even worse than that of pure C;N,.

Their contents of graphene in C3N4-rGO composites are shown in Table S1.
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Figure S3. Time course of hydrogen evolution of pure C;N,4 and C3N4-rGO
composites loaded with 1 wt% Pt and in the presence of TEOA.

Table S1: rGO contents in different C3N4-rGO composites

Initial Reactant Element component in
Calculated
mass mass
Samples Melami GO weight ratio of
elamine r
C(% N(% H(% rGO to C3Ny(%)
(mg) (mg) (%) (%) (%)

Pure C5Ny4 3000 0 3439 62.76 1.67 0
C;3N4-rGO-250 3000 12 3478 63.04 1.60 0.24
C;3N4-rGO-150 3000 20 3442 61.01 1.39 1.05
C;3N4rGO-80 3000 37.5 35.14 60.73 1.48 1.98
C;3N4rGO-50 3000 60 3426 58.54 1.7 2.41

C3N4-rGO-30 3000 100 35.63 5638 1.27 5.43
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Figure S4. XPS survey spectrum of the fresh wet C3N4-rGO-150-WO5 1000-
260 loaded with 1 wt% Pt dried in Ar.
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Figure SS5. a) The mass spectra results of background test without adding
photocatalyst; b) mass spectra of gas mixture from the visible-light irradiated reactor
with D,0O and C3;N4-rGO-150-WO; 1000-260 (loaded with 1 wt% Pt) as reactants.
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Figure S6. Time course of oxygen evolution of 100 mg of WO;-1/3H,0 powder
dispersed into 100 mL of water with 10 mmol/L of AgNOj as an electron acceptor.
It is obvious to note that the WO;-1/3H,0 shows oxygen evolution photocatalytic

activity under visible light with AgNOj as an electron acceptor. The slight
decrease of oxygen evolution rate can be attributed to the consumption of Ag* and
the deposition of Ag nanoparticles onto the surface of WOs.



