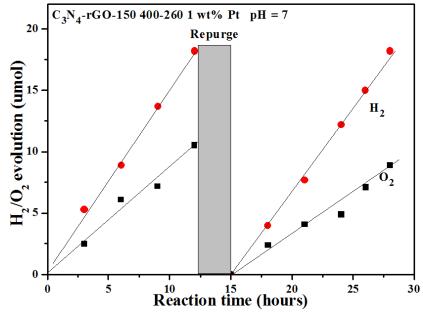

Supporting Information

Facile Structure Design Based on C₃N₄ for Mediator-free Z-Scheme Water Splitting under Visible Light


Guixia Zhao,[‡] Xiubing Huang,[‡] Federica Fina, Guan Zhang, and John T.S. Irvine*

School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, Fife, UK

- * Corresponding author: Prof. John T.S. Irvine, E-mail: jtsi@st-andrews.ac.uk
- **‡** These authors contributed equally to this work.

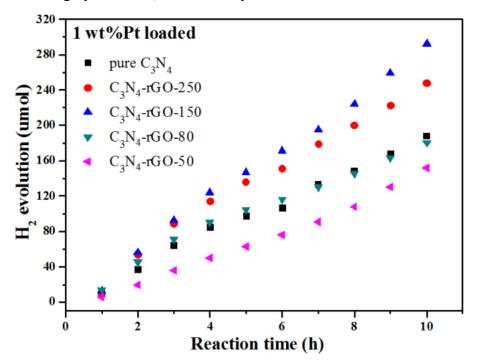


Figure S1. TEM images of C₃N₄-rGO-150-WO₃ 400-260 loaded with 1 wt% Pt after photocatalytic test.

Figure S2. Time course of H_2/O_2 evolution for C_3N_4 -rGO-150-WO₃ 400-260 loaded with 1 wt% Pt under visible light irradiation ($\lambda > 420$ nm) at pH = 7.

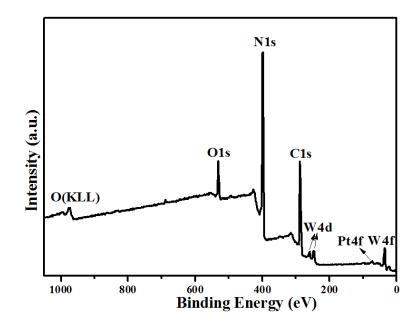

Typical time courses of the H₂ evolution by C_3N_4 -rGO composites with TEOA as sacrificial agent under visible light is shown in Fig. S2. It is obviously to note that the C_3N_4 -rGO-250 and C_3N_4 -rGO-150 showed higher activity than pure C_3N_4 and C_3N_4 rGO-150 held the best among the five samples. The composite with the highest graphene content showed the lowest performance, even worse than that of pure C_3N_4 . Their contents of graphene in C_3N_4 -rGO composites are shown in Table S1.

Figure S3. Time course of hydrogen evolution of pure C₃N₄ and C₃N₄-rGO composites loaded with 1 wt% Pt and in the presence of TEOA.

Samples	Initial Reactant mass		Element component in mass			Calculated
	Melamine (mg)	rGO (mg)	C(%)	N(%)	H(%)	weight ratio of rGO to $C_3N_4(\%)$
Pure C ₃ N ₄	3000	0	34.39	62.76	1.67	0
C ₃ N ₄ -rGO-250	3000	12	34.78	63.04	1.60	0.24
C ₃ N ₄ -rGO-150	3000	20	34.42	61.01	1.39	1.05
C ₃ N ₄ -rGO-80	3000	37.5	35.14	60.73	1.48	1.98
C ₃ N ₄ -rGO-50	3000	60	34.26	58.54	1.7	2.41
C ₃ N ₄ -rGO-30	3000	100	35.63	56.38	1.27	5.43

Table S1: rGO contents in different C₃N₄-rGO composites

Figure S4. XPS survey spectrum of the fresh wet C₃N₄-rGO-150-WO₃ 1000-260 loaded with 1 wt% Pt dried in Ar.

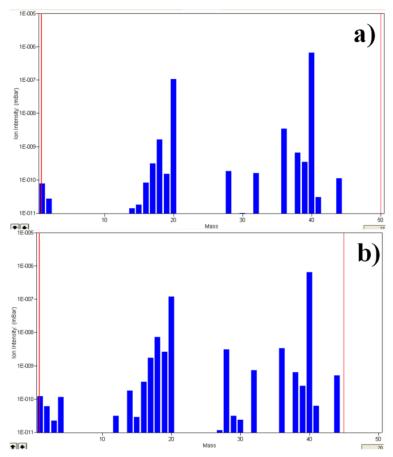


Figure S5. a) The mass spectra results of background test without adding photocatalyst; b) mass spectra of gas mixture from the visible-light irradiated reactor with D_2O and C_3N_4 -rGO-150-WO₃ 1000-260 (loaded with 1 wt% Pt) as reactants.

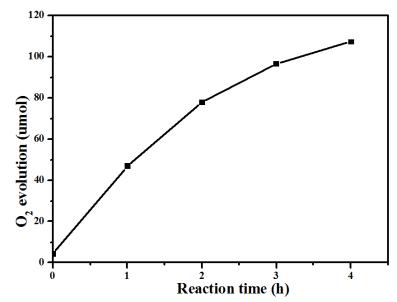


Figure S6. Time course of oxygen evolution of 100 mg of WO₃ · 1/3H₂O powder dispersed into 100 mL of water with 10 mmol/L of AgNO₃ as an electron acceptor. It is obvious to note that the WO₃ · 1/3H₂O shows oxygen evolution photocatalytic activity under visible light with AgNO₃ as an electron acceptor. The slight decrease of oxygen evolution rate can be attributed to the consumption of Ag⁺ and the deposition of Ag nanoparticles onto the surface of WO₃.