Base-regulated tunable synthesis of pyridobenzoxazepinones and pyridobenzoxazines

Content
1. General considerations S2
2. Materials S2
3. Representative procedure for the synthesis of pyridobenzoxazepinones and pyridobenzoxazine S2
4. Representative procedure for the synthesis of pyridobenzoxazines S2
5. The procedure of the two-step reaction for the mechanism investigation S2
6. Analytic data S3
7. Spectrum Copies S16
8. Reference S54
General considerations

Nuclear Magnetic Resonance spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. All $^1$H NMR experiments were reported in $\delta$ units, parts per million (ppm), and were measured relative to residual chloroform (7.26 ppm) or DMSO (2.5 ppm) in the deuterated solvent. All $^{13}$C NMR spectra were reported in ppm relative to deuterochloroform (77.0 ppm) or [D_6]DMSO (39.5 ppm) and all were obtained with $^1$H decoupling. All coupling constants $J$ were reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet and br s = broad singlet. All measurements were carried out at room temperature unless otherwise stated. Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). High resolution mass spectra (HRMS) were recorded on Agilent 6210. The data were given as mass units per charge (m/z). Gas chromatography analysis was performed on an Agilent HP-5890 instrument with a FID detector and HP-5 capillary column (polysiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 μm film thickness) using argon as carrier gas. The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh (Merck).

Materials

DMSO (99.8 %), NMP (99.5%), DMF (anhydrous, 99.8%), DMA (anhydrous, 99.8 %) was purchased from Sigma-Aldrich or Acros and used without further purification. All Chemicals were commercial available and used without further purification unless otherwise noted.

Representative procedure for the synthesis of pyridobenzoxazepinones and pyridobenzoxazines

A Wheaton vial (4 mL) equipped with a septum, a small cannula was charged with Pd(OAc)$_2$ (2 mol%), BuPAd$_2$ (6 mol%), 3-bromo-2-chloropyridine (0.50 mmol), 2-aminophenol (0.50 mmol), sodium carbonate (1.5 mmol) and a magnetic stirring bar. The vial was purged with argon before DMSO (2.0 mL) was injected by using a syringe. The vial (or several vials) was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments under argon atmosphere. After flushing the autoclave three times with CO, a pressure of 10 bars CO was adjusted at ambient temperature. Afterwards the reaction was performed for 12 h at 120°C. After the reaction was completed, the autoclave was cooled down with ice-water mixture to room temperature and the pressure was released carefully. The solution was diluted with acetone and then silica gel was added into the solution. After evaporation of the organic solvent, the crude product was purified by column chromatography using ethyl acetate/n-pentane.

Representative procedure for the synthesis of pyridobenzoxazines

To an oven-dried 10 mL Schlenk tube was added 3-bromo-2-chloropyridine (0.50 mmol), 2-aminophenol (0.50 mmol), cesium carbonate (1.0 mmol) and a magnetic stirring bar. The Schlenk tube was purged with argon before DMSO (2.0 mL) was injected by using a syringe. Then the reaction was performed for 24 h at 120°C. After the reaction was completed, the reaction mixture was diluted with acetone and then silica gel was added into the solution. After evaporation of the organic solvent, the crude product was purified by column chromatography using ethyl acetate/n-pentane.

The procedure of the two-step reaction for the mechanism investigation

A Wheaton vial (4 mL) equipped with a septum, a small cannula was charged with 3-bromo-2-chloropyridine (0.50 mmol), 2-aminophenol (0.50 mmol), sodium carbonate (1.0 mmol), hexadecane (100 μL, internal standard) and a magnetic stirring bar. The vial was purged with argon before DMSO (2.0 mL) was injected by using a syringe. The vial was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments under argon atmosphere. After flushing the autoclave three times with N$_2$, a pressure of 3 bars N$_2$ was adjusted at ambient temperature. Afterwards the first-step reaction was performed for 12 h at 120°C. After completion of the first-step reaction, the autoclave was
cooled down with ice-water mixture to room temperature and the pressure was released carefully. 150μL reaction mixture was transferred out of the vial for GC and GC-MS analysis. And then Pd(OAc)$_2$ (2 mol%), BuPAd$_2$ (6 mol%), sodium carbonate (0.5 mmol) was added into the reaction mixture under the argon. The vial (or several vials) was placed in an alloy plate, which was transferred into a 300 mL autoclave from Parr Instruments under argon atmosphere. After flushing the autoclave three times with CO, a pressure of 10 bars CO was adjusted at ambient temperature. Afterwards the second-step reaction was performed for 12 h at 120°C. After the reaction was completed, the autoclave was cooled down with ice-water mixture to room temperature and the pressure was released carefully. The solution was diluted with acetone and then silica gel was added into the solution. After evaporation of the organic solvent, the crude product was purified by column chromatography using ethyl acetate/n-pentane.

**Analytic data**

**Benzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one$^{[1]}$**

![Structure of Benzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one](image)

White solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 10.76 (br s, 1H), 8.51 (dd, $J$ = 1.8, 4.7 Hz, 1H), 8.27 (dd, $J$ = 1.8, 7.5 Hz, 1H), 7.46 (dd, $J$ = 4.8, 7.7 Hz, 1H), 7.34 (dd, $J$ = 1.8, 7.4 Hz, 1H), 7.26-7.14 (m, 3H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 164.5, 162.3, 152.4, 148.1, 142.4, 130.5, 126.4, 125.6, 122.5, 121.9, 121.7, 120.0.

GC-MS (EI, 70 eV): m/z (%) = 212 (100), 184 (36), 155 (41), 130 (9), 77 (11), 52 (11).

HRMS (EI): calcd. for [C$_{12}$H$_8$O$_2$N$_2$]$^+$ 212.05803, found 212.05831.

**8-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one**

![Structure of 8-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one](image)

White solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 10.69 (br s, 1H), 8.49 (dd, $J$ = 1.8, 4.8 Hz, 1H), 8.26 (dd, $J$ = 2.1, 7.7 Hz, 1H), 7.45 (dd, $J$ = 4.8, 7.8 Hz, 1H), 7.21 (d, $J$ = 9.0 Hz, 1H), 6.98 (s, 1H), 6.98-6.65 (m, 1H), 2.25 (s, 3H).

$^{13}$C NMR (100MHz, [D$_6$]DMSO): $\delta$ = 164.5, 162.5, 152.3, 146.0, 142.3, 135.7, 130.1, 126.0, 122.4, 121.8, 121.5, 120.1, 20.3.

GC-MS (EI, 70 eV): m/z (%) = 226 (100), 211 (11), 197 (64), 183 (7), 169 (24), 155 (12), 77 (14), 51 (8).

HRMS (EI): calcd. for [C$_{13}$H$_{10}$O$_2$N$_2$]$^+$ 226.07368, found 226.07358.
9-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one\[^{1a}\]

![Structure](image)

Pale yellow solid; \(^1\)H NMR (300 MHz, [D\textsubscript{6}]DMSO): \(\delta = 10.64\) (br s, 1H), 8.49 (dd, \(J = 2.1, 4.5\) Hz, 1H), 8.25 (dd, \(J = 2.1, 7.5\) Hz, 1H), 7.45 (dd, \(J = 4.8, 7.8\) Hz, 1H), 7.16 (s, 1H), 7.08-7.00 (m, 2H), 2.26 (s, 3H).

\(^{13}\)C NMR (75 MHz, [D\textsubscript{6}]DMSO): \(\delta = 164.9, 162.9, 152.8, 148.5, 142.8, 135.9, 128.3, 127.3, 123.0, 122.6, 122.0, 120.6, 20.6\).

GC-MS (EI, 70 eV): \(m/z\) (%) = 226 (100), 211 (5), 197 (79), 169 (41), 77 (44), 65 (24), 50 (41), 39 (30).

HRMS (EI): calcd. for \(\text{[C}_{13}\text{H}_{10}\text{O}_{2}\text{N}_{2}]^{+}\) 226.07368, found 226.07395.

7-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

Pale yellow solid; \(^1\)H NMR (300 MHz, [D\textsubscript{6}]DMSO): \(\delta = 10.17\) (br s, 1H), 8.48 (dd, \(J = 2.1, 4.8\) Hz, 1H), 8.22 (dd, \(J = 2.1, 7.7\) Hz, 1H), 7.46 (dd, \(J = 4.8, 7.8\) Hz, 1H), 7.21-7.16 (m, 1H), 7.11-7.08 (m, 2H), 2.34 (s, 3H).

\(^{13}\)C NMR (75 MHz, [D\textsubscript{6}]DMSO): \(\delta = 165.3, 163.4, 152.6, 150.8, 142.6, 132.2, 129.4, 128.4, 126.2, 123.1, 121.1, 119.9, 18.3\) (d, \(J = 3.0\) Hz).

GC-MS (EI, 70 eV): \(m/z\) (%) = 226 (100), 211 (14), 197 (70), 183 (19), 169 (49), 77 (67), 65 (41), 50 (48), 39 (46).

HRMS (EI): calcd. for \(\text{[C}_{13}\text{H}_{10}\text{O}_{2}\text{N}_{2}]^{+}\) 226.07368, found 226.07401.

8-Chlorobenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one\[^{1b}\]

![Structure](image)

White solid; \(^1\)H NMR (300 MHz, [D\textsubscript{6}]DMSO): \(\delta = 10.83\) (br s, 1H), 8.52 (dd, \(J = 2.1, 4.8\) Hz, 1H), 8.28 (dd, \(J = 1.8, 7.7\) Hz, 1H), 7.49 (dd, \(J = 4.8, 7.8\) Hz, 1H), 7.40-7.36 (m, 1H), 7.23-7.20 (m, 2H).

\(^{13}\)C NMR (75 MHz, [D\textsubscript{6}]DMSO): \(\delta = 164.3, 161.8, 152.6, 146.7, 142.5, 132.9, 129.9, 125.1, 123.5, 122.8, 121.0, 119.7\).
GC-MS (EI, 70 eV): m/z (%) = 246 (100), 218 (28), 211 (65), 183 (43), 155 (85), 77 (76), 63 (46), 50 (78), 38 (27).

HRMS (EI): calcd. for [C_{12}H_{7}O_{2}N_{2}Cl]^{+} 246.01906, found 246.01951; calcd. for [C_{12}H_{7}O_{2}N_{2}^{37}Cl]^{+} 248.01676.

8-Fluorobenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

Pale pink solid; ^1H NMR (300 MHz, [D_6]DMSO): δ = 10.83 (br s, 1H), 8.52 (dd, J = 2.1, 4.8 Hz, 1H), 8.27 (dd, J = 2.1, 7.5 Hz, 1H), 7.48 (dd, J = 4.8, 7.5 Hz, 1H), 7.42-7.37 (m, 1H), 7.04-6.99 (m, 2H);

^19F NMR (282 MHz, [D_6]DMSO): δ = -115.46 (m);

^13C NMR (100 MHz, [D_6]DMSO): δ = 164.3, 162.1, 159.2 (d, J = 241 Hz), 152.6, 144.3 (d, J = 3.0 Hz), 142.5, 132.0 (d, J = 12.0 Hz), 123.3 (d, J = 9.0 Hz), 122.7, 119.8, 111.8 (d, J = 23.0 Hz), 108.1 (d, J = 27.0 Hz).

GC-MS (EI, 70 eV): m/z (%) = 230 (100), 202 (35), 173 (66), 147 (17), 77 (44), 50 (50).

HRMS (EI): calcd. for [C_{12}H_{7}O_{2}F]^{+} 230.04861, found 230.04875.

9-Chlorobenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

White solid; ^1H NMR (300 MHz, [D_6]DMSO): δ = 10.83 (br s, 1H), 8.52 (dd, J = 2.1, 4.8 Hz, 1H), 8.28 (dd, J = 2.1, 7.5 Hz, 1H), 7.49 (dd, J = 4.8, 7.5 Hz, 1H), 7.46 (d, J = 2.4 Hz, 1H), 7.33 (dd, J = 2.4, 8.4 Hz, 1H), 7.20 (d, J = 8.7 Hz, 1H).

^13C NMR (75 MHz, [D_6]DMSO): δ = 164.6, 162.2, 153.1, 148.8, 143.0, 130.3, 129.2, 127.0, 123.4, 122.4, 122.3, 120.3.

GC-MS (EI, 70 eV): m/z (%) = 246 (95), 211 (100), 183 (46), 155 (34), 77 (18).

HRMS (EI): calcd. for [C_{12}H_{7}O_{2}N_{2}Cl]^{+} 246.01906 found 246.01935, calcd. for [C_{12}H_{7}O_{2}N_{2}^{37}Cl]^{+} 246.01611, found 248.01628.
Naphtho[2,3-\textit{b}]pyrido[3,2-\textit{f}][1,4]oxazepin-5(6\textit{H})-one

![Chemical structure]

White solid; \textit{^1}H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 11.06 (br s, 1H), 8.54 (dd, $J$ = 2.1, 4.8 Hz, 1H), (d, $J$ = 2.1, 7.7 Hz, 1H), 7.95 (s, 1H), 7.93-7.84 (m, 2H), 7.67 (s, 1H), 7.51-7.45 (m, 3H).

\textit{^13}C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 165.1, 162.2, 153.0, 148.3, 142.8, 131.5, 131.1, 130.3, 127.7, 127.4, 126.9, 126.3, 123.2, 120.5, 119.4, 119.1.

GC-MS (EI, 70 eV): m/z (%) = 262 (100), 234 (37), 205 (52), 114 (13).

HRMS (EI): calcd. for [C$_{16}$H$_{10}$O$_2$N$_2$]$^+$ 262.07368, found 262.07392.

Naphtho[2,1-\textit{b}]pyrido[3,2-\textit{f}][1,4]oxazepin-12(13\textit{H})-one

![Chemical structure]

White solid; \textit{^1}H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 11.03 (br s, 1H), 8.51 (dd, $J$ = 1.8, 4.8 Hz, 1H), 8.27 (dd, $J$ = 2.1, 7.7 Hz, 1H), 8.22 (d, $J$ = 8.4 Hz, 1H), 7.97 (d, $J$ = 7.5 Hz, 1H), 7.84 (d, $J$ = 8.7 Hz, 1H), 7.66-7.53 (m, 2H), 7.55 (d, $J$ = 8.7 Hz, 1H), 7.47 (dd, $J$ = 4.8, 7.5 Hz, 1H).

\textit{^13}C NMR (100 MHz, [D$_6$]DMSO): $\delta$ = 165.2, 163.5, 152.1, 146.8, 142.2, 131.5, 128.1, 126.8, 126.7, 126.1, 124.5, 122.7, 122.6, 121.0, 120.6.

GC-MS (EI, 70 eV): m/z (%) = 262 (100), 234 (41), 205 (59).

HRMS (EI): calcd. for [C$_{16}$H$_{10}$O$_2$N$_2$]$^+$ 262.07368, found 262.07381.

6-Methylbenzo[\textit{b}]pyrido[3,2-\textit{f}][1,4]oxazepin-5(6\textit{H})-one

![Chemical structure]

Solid white; \textit{^1}H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 8.47 (dd, $J$ = 0.9, 4.1 Hz 1H), 8.25 (dd, $J$ = 1.5, 7.8 Hz, 1H), 7.53-7.26 (m, 5H), 3.51 (s, 3H).

\textit{^13}C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 163.9, 163.2, 151.9, 150.5, 142.7, 134.8, 126.7, 126.6, 123.2, 122.6, 121.8, 120.2, 36.1.

GC-MS (EI, 70 eV): m/z (%) = 226 (100), 209 (9), 197 (24), 181 (23), 169 (31).
HRMS (EI): calcd. for $[C_{13}H_{10}O_2N_2]^+$ 226.07368, found 226.07387.

3-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

White solid; $^1H$ NMR (300 MHz, $[D_6]$DMSO): $\delta = 10.69$ (br s, 1H), 8.31 (s, 1H), 8.06 (s, 1H), 7.32 (d, $J = 8.4$ Hz, 1H), 7.22-7.13 (m, 3H), 2.32 (s, 3H).
$^{13}$C NMR (75 MHz, $[D_6]$DMSO): $\delta = 165.1, 161.0, 152.6, 148.8, 142.7, 132.4, 131.0, 126.7, 126.0, 122.3, 122.2, 119.7, 17.3.$

GC-MS (EI, 70 eV): m/z (%) = 226 (100), 198 (36), 169 (24).

HRMS (EI): calcd. for $[C_{13}H_{10}O_2N_2]^+$ 226.07368, found 226.07372.

3,8-Dimethylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

Pale yellow solid, $^1H$ NMR (300 MHz, $[D_6]$DMSO): $\delta = 10.63$ (br s, 1H), (dd, $J = 0.9, 2.3$ Hz, 1H), (dd, $J = 0.9, 2.3$ Hz, 1H), 7.19 (d, $J = 7.8$ Hz, 1H), 6.98-6.93 (m, 2H), 2.31 (s, 3H), 2.24 (s, 3H).
$^{13}$C NMR (75 MHz, $[D_6]$DMSO): $\delta = 164.6, 160.7, 152.0, 146.2, 142.1, 135.6, 131.8, 130.1, 125.9, 121.8, 121.4, 119.2, 20.3, 16.8.$

GC-MS (EI, 70 eV): m/z (%) = 240 (100), 225 (13), 211 (67), 183 (17).

HRMS (EI): calcd. for $[C_{14}H_{12}O_2N_2]^+$ 240.08933, found 240.08975.

3,9-Dimethylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

Pale yellow solid, $^1H$ NMR (300 MHz, $[D_6]$DMSO): $\delta = 10.59$ (br s, 1H), 8.29 (dd, $J = 0.6, 2.6$ Hz, 1H), 8.05 (dd, $J = 0.6, Hz, 1H), 7.14 (s, 1H), 7.07-6.99 (m, 2H), 2.31 (s, 3H), 2.26 (s, 3H).
$^{13}$C NMR (75 MHz, $[D_6]$DMSO): $\delta = 165.0, 161.1, 152.5, 148.7, 142.6, 135.8, 132.3, 128.3, 127.2, 122.5, 121.9, 119.8, 20.5, 17.3.$
GC-MS (EI, 70 eV): m/z (%) = 240 (100), 211 (55), 197 (9), 183 (18).

HRMS (EI): calcd. for \([C_{14}H_{12}O_2N_2]^+\) 240.08933, found 240.08955.

3,7-Dimethylbenzo\([b]\)pyrido[3,2-\(f\)][1,4]oxazepin-5(6\(H\))-one

GC-MS (EI, 70 eV): m/z (%) = 240 (100), 223 (13), 211 (65), 196 (19), 183 (39), 77 (21), 65(22), 51 (29), 39 (42).

HRMS (EI): calcd. for \([C_{14}H_{12}O_2N_2]^+\) 240.08933, found 240.08958

8-Chloro-3-methylbenzo\([b]\)pyrido[3,2-\(f\)][1,4]oxazepin-5(6\(H\))-one

Pale yellow solid; \(^1\)H NMR (300 MHz, [D\(_6\)]DMSO): \(\delta = 10.77 \text{ (br s, 1H)}\), 8.32 (dd, \(J = 0.9, 2.7 \text{ Hz, 1H})\), 8.07 (d, \(J = 0.9, 2.6 \text{ Hz, 1H})\), 7.35 (dd, \(J = 1.2, 7.8 \text{ Hz, 1H})\), 7.22-7.18 (m, 2H), 2.31 (s, 3H).

\(^{13}\)C NMR (75 MHz, [D\(_6\)]DMSO): \(\delta = 164.9, 160.5, 152.8, 147.4, 142.8, 132.7, 132.5, 130.3, 125.6, 123.9, 121.5, 119.4, 17.3.\)

GC-MS (EI, 70 eV): m/z (%) = 260 (100), 231 (25), 225 (68), 197 (33), 169 (41).

HRMS (EI): calcd. for \([C_{13}H_9O_2Cl]^+\) 260.03471, found 260.03481; calcd. for \([C_{13}H_9O_2^{13}Cl]^+\) 262.03176, found 262.03243.

8-Fluoro-3-methylbenzo\([b]\)pyrido[3,2-\(f\)][1,4]oxazepin-5(6\(H\))-one

White solid; \(^1\)H NMR (300 MHz, [D\(_6\)]DMSO): \(\delta = 10.78 \text{ (br s, 1H)}\), 8.32 (dd, \(J = 0.9, 2.4 \text{ Hz, 1H})\), 8.07 (dd, \(J = 0.9, 2.7 \text{ Hz, 1H})\), 7.38-7.33 (m, 1H), 7.03-6.97 (m, 2H), 2.32 (s, 3H).

\(^{19}\)F NMR (282 MHz, [D\(_6\)]DMSO): \(\delta = -115.6 \text{ (m)}\).

\(^{13}\)C NMR (75 MHz, [D\(_6\)]DMSO): \(\delta = 164.9, 159.6 \text{ (d, } J = 240.8 \text{ Hz)}\), 160.8, 152.8, 144.9 (d, \(J = 4.5 \text{ Hz})\), 142.7, 132.6, 132.4 (d, \(J = 11.3 \text{ Hz})\), 123.7 (d, \(J = 9.8 \text{ Hz})\), 119.5, 112.3 (d, \(J = 23.3 \text{ Hz})\), 108.6 (d, \(J = 27.0 \text{ Hz})\), 17.3.
GC-MS (EI, 70 eV): m/z (%) = 244 (100), 215 (34), 187 (25).

HRMS (EI): calcd. for [C_{13}H_{9}O_{2}N_{2}]^+ 244.06426, found 244.06486.

9-Chloro-3-methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

![Chemical structure of 9-Chloro-3-methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one]

White solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 10.78 (br s, 1H), 8.33 (dd, $J$ = 0.9, 1.2 Hz, 1H), 8.08 (dd, $J$ = 0.9, 2.6 Hz, 1H), 7.44 (d, $J$ = 2.4 Hz, 1H), 7.31 (dd, $J$ = 2.4, 8.4 Hz, 1H), 7.19 (d, $J$ = 8.7 Hz, 1H), 2.32 (s, 3H).

$^{13}$C NMR (100 MHz, [D$_6$]DMSO): $\delta$ = 164.2, 159.9, 152.2, 148.5, 142.3, 132.3, 129.8, 128.7, 126.3, 122.8, 121.8, 119.0, 16.8.

GC-MS (EI, 70 eV): m/z (%) = 260 (100), 231 (22), 225 (77), 197 (41), 169 (23), 78 (30), 63 (55), 51 (49), 39 (34).

HRMS (EI): calcd. for [C$_{13}$H$_9$N$_2$O$_2$Cl]$^+$ 260.03471, found 260.03499; calcd. for [C$_{13}$H$_9$N$_2$O$_2^{37}$Cl]$^+$ 262.03176, found 262.03239.

3-Methylnaphtho[2,3-b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

![Chemical structure of 3-Methylnaphtho[2,3-b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one]

Pale pink solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 10.99 (br s, 1H), 8.34 (s, 1H), 8.09 (s, 1H), 7.92 (s, 1H), 7.92-7.83 (m, 2H), 7.65 (s, 1H), 7.50-7.42 (m, 2H), 2.32 (s, 3H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 165.2, 160.4, 152.7, 148.5, 142.6, 132.6, 131.4, 131.1, 130.4, 127.7, 127.4, 126.9, 126.3, 119.7, 119.2, 118.9, 17.3.

GC-MS (EI, 70 eV): m/z (%) = 276 (100), 248 (39), 220 (42), 205 (12).

HRMS (EI): calcd. for [C$_{17}$H$_{12}$O$_2$N$_2$]$^+$ 276.08933, found 276.08920.

2-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

![Chemical structure of 2-Methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one]
White solid; \[^1^H\text{NMR (300 MHz, [D}_6\text{]DMSO)}: \delta = 10.64 \text{ (br s, 1H), 8.14 (d, } J = 7.8 \text{ Hz, 1H), 7.33 (dd, } J = 1.5, 7.7 \text{ Hz, 1H), 7.30 (d, } J = 7.8 \text{ Hz, 1H), 7.24-7.12 \text{ (m, 3H), 2.49 (s, 3H, overlapped by the solvent residual peak of [D}_6\text{]DMSO).}}\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]

\[^{13}\text{C NMR (75 MHz, [D}_4\text{]DMSO)}: \delta = 165.1, 162.9, 162.1, 148.5, 142.9, 131.1, 126.8, 125.9, 122.4, 122.2, 122.1, 117.3, 24.2.\]
2,7-Dimethylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

![Chemical structure of 2,7-Dimethylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one]

White solid; 
\[^1H\text{ NMR (300 MHz, } [D_6]\text{DMSO)}: \delta = 10.05 \text{ (br s, 1H), (d, } J = 7.5 \text{ Hz, 1H), (dd, } J = 0.6, 7.8 \text{ Hz, 1H), 7.20-7.16 \text{ (m, 1H), 7.117.05 \text{ (m, 2H), 2.48 \text{ (s, 1H), 2.33 \text{ (s, 3H).}}}
\]

\[^{13}C\text{ NMR (75 MHz, } [D_6]\text{DMSO): } \delta = 165.3, 162.6, 150.7, 144.2, 142.6, 134.7, 132.0, 129.5, 128.3, 126.1, 122.4, 121.4, 119.9, 117.9, 112.5, 24.2, 18.3.\]

GC-MS (EI, 70 eV): m/z (%) = 240 (100), 225 (17), 211 (52), 183 (17).

HRMS (EI): calcd. for [C_{14}H_{12}O_2N_2]^+ 240.08933, found 240.08972.

8-Chloro-2-methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

![Chemical structure of 8-Chloro-2-methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one]

White solid; 
\[^1H\text{ NMR (300 MHz, } [D_6]\text{DMSO)}: \delta = 10.73 \text{ (br s, 1H), 8.15 \text{ (d, } J = 7.8 \text{ Hz, 1H), 7.37 \text{ (d, } J = 9.0 \text{ Hz, 1H), 7.33 \text{ (d, } J = 7.5 \text{ Hz, 1H), 7.22-7.18 \text{ (m, 2H), 2.50 \text{ (s, 3H, overlapped by the solvent residual peak of } [D_6]\text{DMSO).}}}
\]

\[^{13}C\text{ NMR (75 MHz, } [D_6]\text{DMSO): } \delta = 164.3, 162.7, 161.1, 146.7, 142.6, 132.1, 129.8, 124.9, 123.6, 122.0, 120.9, 116.5, 23.7.\]

GC-MS (EI, 70 eV): m/z (%) = 260 (100), 231 (33), 225 (78), 197 (56), 169 (60), 91 (37), 78 (58), 63 (83), 51 (60), 39 (48).

HRMS (EI): calcd. for [C_{13}H_{10}O_2Cl]^+ 260.03471, found 260.03503.

9-Chloro-2-methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one

![Chemical structure of 9-Chloro-2-methylbenzo[b]pyrido[3,2-f][1,4]oxazepin-5(6H)-one]

White solid; 
\[^1H\text{ NMR (300 MHz, } [D_6]\text{DMSO): } \delta = 10.73 \text{ (br s, 1H), 8.15 \text{ (d, } J = 7.8 \text{ Hz, 1H), 7.46 \text{ (d, } J = 2.1 \text{ Hz, 1H), 7.35-7.30 \text{ (m, 2H), 7.19 \text{ (d, }} J = 8.7 \text{ Hz, 1H), 2.50 \text{ (s, 3H, overlapped by the solvent residual peak of } [D_6]\text{DMSO).}}
\]

\[^{13}C\text{ NMR (100 MHz, } [D_6]\text{DMSO): } \delta = 164.2, 162.7, 161.0, 148.3, 142.5, 129.9, 128.6, 126.3, 122.8, 122.1, 121.9, 116.6, 23.7.\]
GC-MS (EI, 70 eV): m/z (%) = 260 (99.5), 231 (15), 225 (100), 197 (45), 169 (20).

HRMS (EI): calcd. for [C_{13}H_{9}O_{2}N_{2}Cl]^{-} 260.03471, found 260.03459; calcd. for [C_{13}H_{9}O_{2}N_{2}^{37}Cl]^{-} 262.03176, found 262.03256.

5H-Benzof[b]pyrido[3,2-e][1,4]oxazine

White solid; "H NMR (300 MHz, [D_6]DMSO): δ = 9.00 (br s, 1H), 7.53 (dd, J = 1.5, 5.1 Hz, 1H), 6.88 (d, J = 0.9, 7.8 Hz, 1H), 6.79-6.74 (m, 1H), 6.66-6.53 (m, 4H).

"C NMR (75 MHz, [D_6]DMSO): δ = 145.9, 142.2, 141.6, 139.0, 131.3, 124.1, 121.2, 120.5, 116.4, 114.9, 114.0.

GC-MS (EI, 70 eV): m/z (%) = 184 (100), 155 (29), 129 (8), 92 (12).

HRMS (EI): calcd. for [C_{12}H_{10}ON_{2}]^{+} 184.06311, found 184.06293.

7-Methyl-5H-benzof[b]pyrido[3,2-e][1,4]oxazine

White solid; "H NMR (300 MHz, [D_6]DMSO): δ = 8.97 (br s, 1H), 7.52 (dd, J = 1.5, 5.1 Hz, 1H), 6.88-6.85 (m, 1H), 6.56-6.46 (m, 4H), 2.10 (s, 3H)

"C NMR (75 MHz, [D_6]DMSO): δ = 146.1, 142.0, 141.5, 138.9, 130.4, 128.6, 124.2, 122.6, 120.4, 115.6, 113.8, 20.1.

GC-MS (EI, 70 eV): m/z (%) = 198 (100), 169 (15), 155 (7), 99 (7).

HRMS (EI): calcd. for [C_{12}H_{10}ON_{2}]^{+} 198.07876, found 198.07861.

8-Methyl-5H-benzof[b]pyrido[3,2-e][1,4]oxazine

White solid; "H NMR (300 MHz, [D_6]DMSO): δ = 8.90 (br s, 1H), 7.51 (dd, J = 1.5, 5.1 Hz, 1H), 6.88-6.85 (m, 1H), 6.59-6.46 (m, 4H), 2.10 (s, 3H)

"C NMR (75 MHz, [D_6]DMSO): δ = 146.1, 142.0, 141.5, 138.9, 130.4, 128.6, 124.2, 122.6, 120.4, 115.6, 113.8, 20.1.

GC-MS (EI, 70 eV): m/z (%) = 198 (100), 169 (11), 116 (9).
HRMS (EI): calcd. for \([\text{C}_{12}\text{H}_{10}\text{ON}_2]^+\) 198.07876, found 198.07876.

6-Methyl-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

![6-methyl-5H-benzo[b]pyrido[3,2-e][1,4]oxazine](image)

Light yellow solid; \(^1\text{H NMR (300 MHz, [D}_6\text{]DMSO)}\): \(\delta = 8.26\) (br s, 1H), 7.56 (d, \(J = 4.8\) Hz, 1H), 6.89 (d, \(J = 7.8\) Hz, 1H), 6.64-6.48 (m, 4H), 2.09 (s, 3H).

\(^{13}\text{C NMR (75 MHz, [D}_6\text{]DMSO)}\): \(\delta = 146.5, 142.7, 141.9, 139.6, 129.6, 126.2, 123.4, 121.3, 120.9, 117.3, 113.3, 17.3\).

GC-MS (EI, 70 eV): \(m/z\) (%) = 198 (100), 169 (15), 99 (7).

HRMS (EI): calcd. for \([\text{C}_{12}\text{H}_{10}\text{ON}_2]^+\) 198.07876, found 198.07874.

7-Chloro-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

![7-chloro-5H-benzo[b]pyrido[3,2-e][1,4]oxazine](image)

White solid; \(^1\text{H NMR (300 MHz, [D}_6\text{]DMSO)}\): \(\delta = 9.20\) (br s, 1H), 7.56 (dd, \(J = 1.5, 5.1\) Hz, 1H), (d, \(J = 7.8\) Hz, 1H), 6.66-6.57 (m, 4H).

\(^{13}\text{C NMR (75 MHz, [D}_6\text{]DMSO)}\): \(\delta = 145.0, 141.8, 141.2, 138.8, 132.9, 127.5, 120.9, 120.3, 117.1, 116.3, 113.3\).

GC-MS (EI, 70 eV): \(m/z\) (%) = 218 (100), 183 (14), 155 (29), 109 (11).

HRMS (EI): calcd. for \([\text{C}_{11}\text{H}_{7}\text{ON}_2\text{Cl}]^+\) 218.02414, found 218.02456.

7-Fluoro-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

![7-fluoro-5H-benzo[b]pyrido[3,2-e][1,4]oxazine](image)

White solid; \(^1\text{H NMR (300 MHz, [D}_6\text{]DMSO)}\): \(\delta = 9.19\) (br s, 1H), 7.56 (dd, \(J = 1.5, 5.1\) Hz, 1H), (d, \(J = 7.2\) Hz, 1H), 6.69-6.59 (m, 2H), 6.46-6.36 (m, 2H).

\(^{13}\text{C NMR (75 MHz, [D}_6\text{]DMSO)}\): \(\delta = 158.5\) (d, \(J = 236.3\) Hz), 144.9, 141.7, 138.9, 138.5 (d, \(J = 3.0\) Hz), 132.8 (d, \(J = 11.3\) Hz), 120.8, 117.1, 115.7 (d, \(J = 9.8\) Hz), 106.3 (d, \(J = 22.5\) Hz), 101.0 (d, \(J = 27.8\) Hz).

\(^{19}\text{F NMR (282 MHz, [D}_6\text{]DMSO)}\): \(\delta = -118.8\) (m);

GC-MS (EI, 70 eV): \(m/z\) (%) = 202 (100), 173 (29), 101 (13).
HRMS (EI): calcd. for [C_{11}H_{7}ON_{2}F]^+ 202.05369, found 202.05378.

5-Methyl-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

![5-Methyl-5H-benzo[b]pyrido[3,2-e][1,4]oxazine](image)

White solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): δ = 7.66-7.64 (m, 1H), 6.95-6.87 (m, 2H), 6.75-6.70 (m, 3H), 6.65-6.60 (m, 1H), 3.16 (s, 3H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): δ = 146.2, 143.8, 141.7, 140.6, 133.4, 124.8, 122.2, 120.9, 117.1, 115.3, 113.3, 113.3, 28.5.

GC-MS (EI, 70 eV): m/z (%) = 198 (100), 183 (86), 169 (6).

HRMS (EI): calcd. for [C$_{12}$H$_{10}$ON$_2$]^+ 198.07876, found 198.07824.

3-(Trifluoromethyl)-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

![3-(Trifluoromethyl)-5H-benzo[b]pyrido[3,2-e][1,4]oxazine](image)

Pale yellow solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): δ = 9.69 (br s, 1H), 7.86 (q, $J$ = 1.2 Hz, 1H), 7.15 (d, $J$ = Hz, 1H), 6.84-6.78 (m, 1H), 6.73-6.66 (m, 2H), 6.63-6.60 (m, 1H).

$^{19}$F NMR (292 MHz, [D$_6$]DMSO): δ = -60.04 (s).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): δ = 149.6, 142.5, 139.8, 139.6, 130.3, 124.2 (q, $J$ = 269 Hz), 117.9 (q, $J$ = 32.2 Hz), 116.9, 115.6, 115.1.

GC-MS (EI, 70 eV): m/z (%) = 252 (100), 223 (15), 126 (10).

HRMS (EI): calcd. for [C$_{12}$H$_{7}$ON$_2$F]^+ 252.05050, found 252.05056.

Benzo[5,6][1,4]dioxino[2,3-b]pyridine$^{[2]}$

![Benzo[5,6][1,4]dioxino[2,3-b]pyridine](image)

White solid; $^1$H NMR (300 MHz, [D$_6$]DMSO): δ = 7.83-7.82 (m, 1H), 7.44-7.40 (m, 1H), 7.11-7.00 (m, 5H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): δ = 148.7, 141.6, 141.2, 140.6, 137.4, 124.8, 124.6, 124.4, 121.5, 116.9, 116.2.

GC-MS (EI, 70 eV): m/z (%) = 185 (100), 129 (11), 102 (13), 93 (9).
HRMS (ESI): calcd. for [C_{11}H_{7}NO_{2}+H]^+ 186.05495, found 186.05504.

3-Methyl-2-nitro-10H-phenoxazine

```
O
```

Dark red powder, $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 9.26 (br s, 1H), 7.30 (s, 1H), 6.83-6.77 (m, 1H), 6.72-6.65 (m, 2H), 6.55 (d, $J$ = 7.2 Hz, 1H), 6.34 (s, 1H), 2.40 (s, 3H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 142.2, 140.4, 139.1, 138.1, 132.8, 129.4, 124.3, 122.2, 115.2, 114.8, 114.2, 111.4, 20.9.

GC-MS (EI, 70 eV): m/z (%) = 242 (100), 225 (13), 212 (12), 196 (97), 167 (33).

HRMS (ESI): calcd. for [C$_{13}$H$_{10}$N$_2$O- H] 241.06187, found 241.06206.

2,7-Dimethyl-3-nitro-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

```
```

Brown solid, $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 9.15 (br s, 1H), 7.27-7.25 (m, 1H), 6.60-6.57 (m, 1H), 6.50-6.43 (m, 2H), 6.30-6.28 (m, 1H), 2.39 (s, 3H), 2.11 (s, 3H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 141.0, 140.5, 139.6, 138.6, 133.9, 133.1, 129.5, 122.9, 115.5, 115.4, 115.2, 111.8, 21.4, 20.7.

GC-MS (EI, 70 eV): m/z (%) = 256 (100), 239 (12), 226 (10), 210 (97), 180 (14), 167 (17).

HRMS (EI): calcd. for [C$_{14}$H$_{12}$O$_3$N$_2$] 256.08424, found 256.08438.

2,8-Dimethyl-3-nitro-5H-benzo[b]pyrido[3,2-e][1,4]oxazine

```
```

Dark red solid, $^1$H NMR (300 MHz, [D$_6$]DMSO): $\delta$ = 9.15 (br s, 1H), 7.27-7.25 (m, 1H), 6.60-6.57 (m, 1H), 6.50-6.43 (m, 2H), 6.30-6.28 (m, 1H), 2.39 (s, 3H), 2.11 (s, 3H).

$^{13}$C NMR (75 MHz, [D$_6$]DMSO): $\delta$ = 141.9, 140.3, 138.7, 138.3, 132.9, 131.7, 126.7, 124.4, 115.8, 114.7, 114.0, 111.4, 21.0, 20.1.

GC-MS (EI, 70 eV): m/z (%) = 256 (100), 239 (10), 226 (11), 210 (97), 180 (14), 167 (16).

HRMS (EI): calcd. for [C$_{14}$H$_{12}$O$_3$N$_2$] 256.08424, found 256.08439.
7-Chloro-2-methyl-3-nitro-5\textit{H}-benzo[\textit{b}]pyrido[3,2-\textit{e}][1,4]oxazine

\[
\text{O}_2\text{N} \begin{array}{c} \text{N} \\ \text{Me} \end{array} \begin{array}{c} \text{N} \\ \text{Cl} \end{array} \begin{array}{c} \text{O} \\ \text{Me} \end{array} \begin{array}{c} \text{H} \\ \text{O} \end{array}
\]

Dark red solid, $^1\text{H NMR (300 MHz, [D}_6\text{]DMSO)}$: $\delta = 9.33$ (br s, 1H), 7.29 (s, 1H), 6.72-6.64 (m, 2H), 6.52 (d, $J = 2.4$ Hz, 1H), 6.36 (s, 1H), 2.39 (s, 3H).

$^{13}\text{C NMR (75 MHz, [D}_6\text{]DMSO)}$: $\delta = 141.1, 140.3, 139.7, 136.9, 132.7, 131.1, 127.6, 121.3, 116.5, 115.3, 113.5, 111.6, 20.7.$

HRMS (ESI): calcd. for [C$_{13}$H$_9$ClN$_2$O$_3$ - H]$^-$ 275.02289, found 275.02344; calcd. for [C$_{13}$H$_9^{17}$ClN$_2$O$_3$ - H]$^-$ 277.02036, found 277.02079.

2,5-Dimethyl-3-nitro-5\textit{H}-benzo[\textit{b}]pyrido[3,2-\textit{e}][1,4]oxazine

\[
\text{O}_2\text{N} \begin{array}{c} \text{N} \\ \text{Me} \\ \text{Me} \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{Me} \end{array} \begin{array}{c} \text{Me} \end{array}
\]

Dark red solid, $^1\text{H NMR (300 MHz, [D}_6\text{]DMSO)}$: $\delta = 7.33$ (s, 1H), 6.96-6.90 (m, 1H), 6.86-6.79 (m, 2H), 6.76-6.73(m, 2H), 3.13 (s, 3H), 2.48 (s, 3H partially overlapped by the solvent residual peak of [D$_6$]DMSO).

$^{13}\text{C NMR (75 MHz, [D}_6\text{]DMSO)}$: $\delta = 143.7, 141.9, 139.6, 139.4, 132.6, 131.9, 124.5, 122.7, 115.1, 114.6, 113.3, 110.8, 31.2, 20.9.$

GC-MS (EI, 70 eV): m/z (%) = 256 (100), 239 (10), 226 (7), 210 (74), 195 (52).

HRMS (EI): calcd. for [C$_{14}$H$_{12}$O$_3$N$_2$]$^+$ 256.08424, found 256.08482
### NMR Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data File Name</td>
<td>D:/NMR-Daten for SNAr-Aminocarbonylation/150326.405.10.fid</td>
</tr>
<tr>
<td>Title</td>
<td>150326.405.10.fid</td>
</tr>
<tr>
<td>Comment</td>
<td>Shen SCR1-104-4 Au13C DMSO //opt//topspin 1503.5</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV400</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>297.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zpg30</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>Labor</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
</tbody>
</table>
### Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data File Name</td>
<td>D:\NMR-daten for SNAr\Aminocarbonylation\150325.f301/10/fid</td>
</tr>
<tr>
<td>Title</td>
<td>150325.f301.10.fid</td>
</tr>
<tr>
<td>Comment</td>
<td>Shen\SCR1-120-2 PROTON DMSO {C:\Bruker\TopSpin3.2PL6} 15031</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>nmr</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>POLARIS300</td>
</tr>
<tr>
<td>Author</td>
<td></td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO</td>
</tr>
<tr>
<td>Temperature</td>
<td>298.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zg30</td>
</tr>
<tr>
<td>Experiment</td>
<td>1D</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>16</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>70</td>
</tr>
<tr>
<td>Relaxation Delay</td>
<td>10000</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>10.0000</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>5.3687</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2015-03-25T08:17:00</td>
</tr>
<tr>
<td>Modification Date</td>
<td>2015-03-25T08:19:24</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>300.20</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>6103.5</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>-1197.9</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>32768</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>65536</td>
</tr>
</tbody>
</table>

### Spectra

- **Shen SCR 1-120-1**: C13CPD DMSO
- **Shen SCR 1-120-2**: PROTON DMSO

---

**Chemical Shifts**

- C13CPD DMSO (ppm): 117.34, 122.11, 122.24, 122.41, 125.93, 126.77, 131.09, 142.91, 148.52, 162.14, 162.96, 165.07

---

**PROTON DMSO**

- Parameter: Value
  - Origin: Bruker BioSpin GmbH
  - Driver: nmr
  - Site: 
  - Spectrometer: POLARIS300
  - Author: 
  - Solvent: DMSO
  - Temperature: 298.0
  - Pulse Sequence: zg30
  - Experiment: 1D
  - Number of Scans: 16
  - Receiver Gain: 70
  - Relaxation Delay: 10000
  - Pulse Width: 10.0000
  - Acquisition Time: 5.3687
  - Acquisition Date: 2015-03-25T08:17:00
  - Modification Date: 2015-03-25T08:19:24
Parameter | Value
---|---
Data File Name | D:/NMR-Daten/SNAr-Aminocarbonylation/150121.316.11.Fid
Title | 150121.316.11.Fid
Comment | Shen SCR 1-95-1
Origin | Bruker BioSpin GmbH
Owner | labor
Site |
Spectrometer | AV300
Spectral Width | 21097.0
Lowest Frequency | -1152.8
Nucleus | 13C
Acquired Size | 16384
Spectral Size | 32768

Parameter | Value
---|---
Data File Name | D:/NMR-Daten/SNAr-Aminocarbonylation/150413.304.10.Fid
Title | 150413.304.10.Fid
Comment | Shen SCR1-113-1
Origin | Bruker BioSpin GmbH
Owner |
Site |
Spectrometer | AV300
Spectral Width | 21097.0
Lowest Frequency | -1152.8
Nucleus | 1H
Acquired Size | 16384
Spectral Size | 32768
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time</td>
<td>2015-01-05T15:58:49</td>
</tr>
<tr>
<td>Source</td>
<td>Aminocarbonylation</td>
</tr>
<tr>
<td>Site</td>
<td>SCR1-74-1</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Author</td>
<td>Shen</td>
</tr>
<tr>
<td>Spectrometer</td>
<td>AV300</td>
</tr>
<tr>
<td>Frequency</td>
<td>300.13</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>617.58</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>32</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>11.0000</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>2.6543</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2015-01-05T15:58:49</td>
</tr>
<tr>
<td>Class</td>
<td>21</td>
</tr>
<tr>
<td>Spectrometer</td>
<td>390.13</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>617.58</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>6225.0</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>32</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>11.0000</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>2.6543</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2015-01-05T15:58:49</td>
</tr>
<tr>
<td>Class</td>
<td>21</td>
</tr>
<tr>
<td>Spectrometer</td>
<td>390.13</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>617.58</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>6225.0</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>32</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>11.0000</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>2.6543</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2015-01-05T15:58:49</td>
</tr>
<tr>
<td>Class</td>
<td>21</td>
</tr>
</tbody>
</table>
Reference

