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Figure S2. High-resolution XPS spectrum of C, O, and N in the cs-Pt3Co nanocrystals
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Figure S3. XRD pattern of the as-prepared cs-Pt3Co catalyst decorated on Vulcan XC-72R
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Table 1S Microarea analysis data from the EDS mapping profiles in Fig 1e-h

Element (keV) Counts Mass% Error% Atom% Compound Mass%Cation

Co K 6.924 2569.19 8.52 0.22 23.57 0.4528

Pt M 2.048 12489.44 91.48 0.05 76.43 1.0000

Total 100 100

Table 2S Microarea analysis data corresponding to the above mapping profiles in Fig. S4

Element (keV) Counts Mass% Error% Atom% Compound Mass%Cation

Co K 6.924 16027.80 8.60 0.21 23.74 0.4528

Pt M 2.048 77177.53 91.40 0.05 76.26 1.0000

Total 100 100

Figure S4. EDS analysis data of cs-Pt3Co nanocrystals revealing Pt/Co atomic ratios of 3.2:1.
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Considering an 11 nm truncated octahedral nanoparticle, it is then possible to estimate the number of 

layers (in this case 21 in total), and hence, the number of atoms in each layer by using the Equation 1 [T.P. 

Martin, Physics Reports, 273, 199–241 (1996)], where Ntotal is the number of atoms in the nanoparticle, 

and L is the number of layers. 

            Equation 1.𝑁𝑡𝑜𝑡𝑎𝑙= 16𝐿
3 ‒ 33𝐿2 + 24𝐿 ‒ 6

Then based on the HRTEM observation, we classified the 6 outer layers as the nanoparticle’s shell, the rest 

(15 layers) as the core. Out of these 6 shell layers, we also consider that the outer one is solely composed 

of Pt atoms (a condition needed to exhibit a high ORR performance). All these conditions, we first calculate 

the number of atoms in the shell with help of equation 1, and then by using equation 2 and expressing the 

Pt/Co ratio (from XPS) as in equation 3, it is possible to estimate the Pt content along the nanoparticle. 

                        Equation 2.𝑁𝑠ℎ𝑒𝑙𝑙= 𝑁𝑆ℎ𝑒𝑙𝑙,𝐶𝑜+ 𝑁𝑆ℎ𝑒𝑙𝑙,𝑃𝑡

                                                  Equation 3.

𝑁𝑆ℎ𝑒𝑙𝑙,𝑃𝑡
𝑁𝑆ℎ𝑒𝑙𝑙,𝐶𝑜

= 4.75

Where “NShell” is the number of atoms at the shell, it can also be applied to the core or the whole 

nanoparticle. In this case, we obtain that the shell is composed of 83 At% of Pt, and since the top layer is 

100% Pt, we then conclude that the rest of the shell (5 layers) contains just 78% of Pt. A similar procedure 

can be perform to estimate the Pt content at the core, resulting in 64 At%
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Figure S5. Description of Pt composition along the cs-Pt3Co nanoparticle according to EDS, XPS, 
and the average particle size. Pt content is indicated by At% in the left side. Right side the Pt/Co 
ratio is indicated. 
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Figure S6. TEM images (a, b, and c) of sp-Pt3Co/Vulcan in different magnification and their 

particle size distribution (d) 
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Figure S7. CVs of the different catalyst electrodes in argon-saturated 0.1 M HClO4 solution at a 

scan rate of 0.05 V/s at room temperature.
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Figure S8. TGA analysis of the sp-Pt3Co/Vulcan and cs-Pt3Co/Vulcan is indicating that the Pt 

loading of sp- and cs-Pt3Co catalysts is 30%. 
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Figure S9 The CV Curves of Commercial Pt/Vulcan (black), sp-Pt3Co/Vulcan and cs-
Pt3Co/Vulcan in argon (short dot line) and oxygen (solid line) saturated 0.1 M HClO4 solution with 
scanning rate 50 mV/s. The ORR peak potential of cs-Pt3Co/Vulcan is 0.664 V, which positively 
shifts around 100 mV compared to sp-Pt3Co/Vulcan (0.568 V) and commercial Pt/Vulcan (0.583 
V). The onset potential of cs-Pt3Co/Vulcan is 0.75 V, while the onset potential of commercial 
Pt/Vulcan is 0.7 V and for sp-Pt3Co/Vulcan it is 0.69 V.
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Figure S10 the polarization curves of Pt/Vulcan (a) and sp-Pt3Co/Vulcan before (black) and after 

5000 CVs in the sweep range 0.32-0.72 V in O2-saturated 0.1 M HClO4 solution. Rotating speed: 

1600 r.p.m. scan rate: 0.05 V/s. 
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Figure S11. TEM images of cs-Pt3Co decorated on Vulcan XC-72 support before (a) and after (b) 

5000 cyclic voltammetry sweeps 
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Table 3S. Comparison of the current work with earlier reported results under similar conditions. 

The column of the half wave potential shift corresponds to the shift reported in the particular reports 

compared to their measurements on commercial Pt/C.

Catalyst
Pt 
loading 
(%)

Electrolyte 

Specific 
activity at 
0.9 V 
(mA/cm2)

△U1/2
a 

(mV) Study by

Pt/C (Tanaka 
Kikinzoku 
Corporation)

28.2 0.1M 
HClO4

0.19

PtCo3/C 27 0.1M 
HClO4

0.57

~32 Koh et al. 
[1]

Pt/C 30 0.1M 
HClO4

0.21

Pt3Co/C 30 0.1M 
HClO4

0.49 --

Srivastava 
et al.[2]

Annealed Pt/C (TKK) 46 0.1M 
HClO4

0.36

Annealed “Pt3Co”/C 46 0.1M 
HClO4

1.39 ~26

Acid-treated “Pt3Co” 
/C 46 0.1M 

HClO4
0.74 ~29

Chen et 
al.[3]

Pt/C (E-TEK) 40 0.5 M 
H2SO4

0.5

Pt3Co/Graphene 40 0.5 M 
H2SO4

1.4
~40 Rao et al.[4]

Pt/C 20 0.1M 
HClO4

--

Pt3Co/C-700 20 0.1M 
HClO4

1.1
70 Wang et 

al.[5]

Pt/C (BASF) 46 0.1M 
HClO4

0.32

Pt92Co8 NWs/C 
(Ketjen carbon) 23.8 0.1M 

HClO4
0.64 --

Guo et 
al.[6]

Pt/Vulcan (Premetek, 
US) 30 0.1M 

HClO4
0.24b

cs-Pt3Co/Vulcan 30 0.1M 
HClO4

1.44b
63 This paper

a the potential at which the current reaches half its diffusion-limited value.
b calculated at 0.55 V vs. Ag/AgCl. 
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Figure S12 Pt-Co supercell with three bottom slabs as a cobalt core. In (a-f) systems with 1 up to 

6 Pt slabs as a shell are shown.
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Figure S13 Pt3Co supercell with three bottom slabs as a cobalt core, a Pt3Co intermediate region 

(except in (a)), and a pure Pt monolayer at the top layer. (a) contains just Co and the Pt monolayer, 

while systems in (b-f) exhibit from 1 up to 5 Pt3Co slabs as a shell, with their respective Pt 

monolayer at the top.
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Table 4S. O-adsorption energy (ΔEO), d-band center (εd – εf), and the ORR overpotential (ηORR) 

obtained by DFT. The number in the system label indicates the number of shell-slabs. These values 

were used to create plots in Figure 4 in the main manuscript.

System label ΔEO (eV) εd - εf ηORR

1-Pt-Co 1.98 -2.72 0.68

2-Pt-Co 1.75 -2.35 0.47

3-Pt-Co 1.61 -2.33 0.53

4-Pt-Co 1.56 -2.33 0.56

5-Pt-Co 1.56 -2.36 0.56

6-Pt-Co 1.55 -2.36 0.55

Pure Pt(111) 1.59 -2.38 0.55

1-Pt-Pt3Co 2.19 -2.84 1.05

2-Pt-Pt3Co 1.92 -2.55 0.56

3-Pt-Pt3Co 1.87 -2.59 0.48

4-Pt-Pt3Co 1.78 -2.59 0.43

5-Pt-Pt3Co 1.83 -2.6 0.41

6-Pt-Pt3Co 1.83 -2.61 0.40

Pure Pt-Pt3Co (111) 1.82 -2.56 0.42

Pure Pt3Co (111) 0.85 - 1.01


