Enhanced Catalytic Activity of Cobalt Catalysts for Fischer–Tropsch Synthesis via Carburization and Hydrogenation and Its Application for Regeneration

Geunjae Kwak*a,*, Du-Eil Kima, Yong Tae Kima, Hae-Gu Parka, Seok Chang Kanga, Kyoung-Su Haeb, Ki-Won Juna, Yun-Jo Leea,*

a Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, Sinseongno 19, Yuseong, Daejeon 305-600, Republic of Korea

b Nanoscale Catalysis and Reaction Engineering Lab, Department of Chemical and Biomolecular Engineering, Sogang University, 1 Shinsu-dong, Seoul, Republic of Korea
Detailed calculations of CO conversion and hydrocarbon selectivities

Ar was used as an internal standard for the quantitative analysis of flue gases reaching the GC detector. Conversions and selectivities reported herein were calculated from analysis of gas products as follows:

\[
\text{CO conversion (\%)} = 100 \times \frac{((n_{\text{CO}})_{\text{in}} - (n_{\text{CO}})_{\text{out}})}{(n_{\text{CO}})_{\text{in}}}
\]

\[
\text{CO}_2 \text{ selectivity (\%)} = 100 \times \frac{(n_{\text{CO}_2})_{\text{out}}}{((n_{\text{CO}_2})_{\text{in}} - (n_{\text{CO}_2})_{\text{out}})}
\]

Hydrocarbon selectivities (C}_1\text{-C}_4\)

\[
S_{ij} (\%) = \frac{(100 \times (n_{ij}))}{((n_{\text{CO}})_{\text{in}} - (n_{\text{CO}})_{\text{out}} - (n_{\text{CO}_2})_{\text{out}})}
\]

where \(S_{ij}\) is the selectivity of hydrocarbon species \(j\) containing \(i\) carbon atoms, \(n_{ij}\) is the molar flow of compound \(j\) in the gas phase, \((n_{\text{CO}})_{\text{in}}\) and \((n_{\text{CO}})_{\text{out}}\) are the molar flow rates of CO in and out of the reactor, and \((n_{\text{CO}_2})_{\text{out}}\) is the molar flow rate of carbon dioxide out of the reactor.

The selectivity of C}_5+ hydrocarbons was calculated from the C}_1\text{-C}_4 selectivities as:

\[
S_{C5+} (\%) = 100 - (S_{C1} + S_{C2} + S_{C3} + S_{C4})
\]
The reduced cobalt catalysts carburized at lower pressures (0.1 and 1.0 MPa) were insufficiently transformed to Co$_2$C and partly oxidized with exothermicity in air. On the other hand, the well-developed Co$_2$C at 2.0 MPa maintained the presence of the Co$_2$C phase, in spite of air exposure.

Figure S1. XRD patterns of catalysts carburized at different pressures after exposure to air.
Figure S2. XRD pattern of the hydrogenated Co$_2$C (2.0 MPa).
Figure S3. CO conversion and hydrocarbon (CH₄, C₂-C₄, and C₅+) selectivity with time-on-stream for regenerated catalyst after in situ carburization and hydrogenation at 220 °C.
Table s1. Catalytic activities of Co2C depending on hydrogenation conditions in FTS.

<table>
<thead>
<tr>
<th>Hydrogenation Conditions</th>
<th>CO conversion (%)</th>
<th>CTY(^a) ([10^{-5} \text{ mol}\text{CO}/(\text{g}\text{Co}/\text{s})])</th>
<th>Hydrocarbon Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH(_4)</td>
</tr>
<tr>
<td>220 °C 2.0 MPa</td>
<td>80.04</td>
<td>9.82</td>
<td>6.82</td>
</tr>
<tr>
<td>220 °C 0.1 MPa</td>
<td>80.39</td>
<td>9.85</td>
<td>7.11</td>
</tr>
<tr>
<td>Without hydrogenation</td>
<td>39.72</td>
<td>4.87</td>
<td>15.82</td>
</tr>
</tbody>
</table>

GHSV: 8.0 L\(_\text{syn})/(\text{g}_\text{cat}/\text{h})\), \(P\): 2.0 MPa, \(T\): 220 °C, \(H_2/CO\) ratio: 2.0, feed composition: \(H_2/CO/CO_2/Ar = 57.3/28.4/9.3/5.0\) (mol%). Catalytic properties determined after 20 h on stream.

\(^a\)Calculated from cobalt loading in catalysts, CO conversion, and GHSV.