Designing highly efficient Rh/CPOL-bp&PPh₃ heterogenous catalysts for hydroformylation of internal and terminal olefins

Cunyao Li, Kai Xiong, Li Yan, Miao Jiang, Xiangen Song, Tao Wang, Xingkun Chen, Zhuangping Zhan and Yunjie Ding

aDalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
bState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
cUniversity of Chinese Academy of Sciences, Beijing 100039, P. R. China
dDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
1. SUPPORTING FIGURES ..- 3 -
2. SUPPORTING TABLES ..- 15 -
3. NMR CHARACTERIZATIONS OF COMPOUNDS IN SCHEME 1...- 16 -
1. Supporting Figures

Figure S1. (A) 13C MAS NMR spectrum of CPOL-bp&PPh$_3$, (B) 13C NMR spectrum of tris(4-vinphenyl)phosphane and (C) 13C NMR spectrum of vinyl biphephos.

The peaks at 113 ppm in CPOL-bp&PPh$_3$, which can be assigned to unpolymerized vinyl groups, are quite small compared with the corresponding monomers (B, C), indicating that CPOL-bp&PPh$_3$ has high degree of polymerization. The peaks at * are side bands.
Figure S2. 31P MAS NMR spectra of (A) CPOL-bp&PPh$_3$, (B) 0.14 % wt Rh/CPOL-bp&PPh$_3$ and (C) 2.0 % wt Rh/CPOL-bp&PPh$_3$. 31P NMR spectra of (D) tris(4-vinphenyl)phosphane and (E) vinyl biphephos. The peaks at * are side bands. The 31P MAS NMR spectrum of fresh CPOL-bp&PPh$_3$ exhibits an additional small peak at 23.9 ppm corresponding to an oxidation state of phosphorus (P=O), which indicates that slight oxidation of P atom took place during the polymerization. Remarkably, the 31P MAS NMR spectrum of fresh 0.14 % wt Rh/CPOL-bp&PPh$_3$ shows that the peak at 23.7 ppm could be assigned to both oxidation state of phosphorus (P=O) and those PPh$_3$ coordinated with Rh as well. 2.0 % wt Rh/CPOL-bp&PPh$_3$ shows higher peak at 24.0 ppm than 0.14 % wt Rh/CPOL-bp&PPh$_3$, indicating more PPh$_3$ units are coordinated with Rh. Besides, compared with the peak at 146.3 ppm in CPOL-bp&PPh$_3$, 0.14% wt Rh/CPOL-bp&PPh$_3$ gives relatively low-field peak at 144.8 ppm, 2.0 % wt Rh/CPOL-bp&PPh$_3$ gives relatively low-field peak at 144.6 ppm. The low-field shift can be ascribed to the biphephos units coordinated with Rh.
Figure S3. (A) Rh3d XPS spectra of Rh(CO)$_2$(acac), (B) Rh3d XPS spectra of 0.14% Rh/CPOL-bp&PPH$_3$, (C) P2p XPS spectra of CPOL-bp&PPH$_3$, (E) P2p XPS spectra of 0.14% Rh/CPOL-bp&PPH$_3$.

XPS of Rh(CO)$_2$(acac) shows the binding energies of Rh3d$_{3/2}$ and Rh3d$_{5/2}$ at 314.0 eV and 309.2 eV respectively. In 0.14% Rh/CPOL-bp&PPH$_3$ catalyst, the binding energies of Rh3d$_{3/2}$ and Rh3d$_{5/2}$ decrease to 313.4 eV and 308.6 eV, showing the successful coordination of Rh(CO)$_2$(acac) with CPOL-bp&PPH$_3$ carrier. Interestingly, compared with XPS spectra of P2p in CPOL-bp&PPH$_3$ (two kinds of P species: PPH$_3$ units at 131.8 eV, biphphos units at 132.9 eV), 0.14% Rh/CPOL-bp&PPH$_3$ give relatively higher binding energy (131.9 eV, 133.0 eV), indicating the successful coordination of Rh with two kinds of P species in the polymer skeleton.
Figure S4. Nitrogen sorption isotherms of (A) CPOL-bp&PPh$_3$ and (B) Rh/CPOL-bp&PPh$_3$.

Figure S4 indicates that N$_2$ sorption isotherm of both CPOL-bp&PPh$_3$ and Rh/CPOL-bp&PPh$_3$ give the curve of type-I plus type-IV, showing that the two samples possess both micropores and mesoporous.
Figure S5. Pore size distribution of (A) CPOL-bp&PPh$_3$ and (B) Rh/CPOL-bp&PPh$_3$.

Pore size distribution is calculated from non-local density functional theory (NLDFT). Figure S5 indicates that both CPOL-bp&PPh$_3$ and Rh/CPOL-bp&PPh$_3$ possess hierarchical porosity.
Figure S6. TEM images of CPOL-bp&PPh₃.
Figure S7. TEM images of Rh/CPOL-bp&PPh₃.
Figure S8. TEM images of Rh/CPOL-bp&PPh$_3$ after 6 runs.
Figure S9. SEM images of (A) CPOL-bp&PPh₃, (B) Rh/CPOL-bp&PPh₃ and (C) Rh/CPOL-bp&PPh₃ after 6 runs.

Figure S9 shows that all the samples have hierarchical porosity.
Figure S10. XRD of (A) CPOL-bp&PPh₃, (B) Rh/CPOL-bp&PPh₃ and (C) Rh/CPOL-bp&PPh₃ after 6 runs.

XRD also show that all three samples are amorphous.
2. Supporting Tables

Table S1. Rh concentration of fresh and spend catalysts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rh content (wt.%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/CPOL-bp&PPh<sub>3</sub> (fresh sample)</td>
<td>0.1385%</td>
</tr>
<tr>
<td>Rh/CPOL-bp&PPh<sub>3</sub> (spend sample, 6 runs)</td>
<td>0.1340%</td>
</tr>
</tbody>
</table>

^a The lowest detectable limit of ICP-OES is 10⁻⁶, “85” and “40” in Rh content are untrusted data.
3. NMR characterizations of compounds in Scheme 1

Analytical data for compounds 1-7 and A, B

1H and 13C spectra were recorded on a 500 MHz spectrometer. Chemical shifts were reported in ppm. 1H NMR spectra were referenced to TMS in CDCl$_3$ (0 ppm) or d$_6$-DMSO (0 ppm), and 13C-NMR spectra were referenced to CDCl$_3$ (77.0 ppm) or d$_6$-DMSO (39.5 ppm). All 13C-NMR spectra were measured with complete proton decoupling except compound (A). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz.

Mass spectroscopy were recorded on a Esquire 3000 Plus mass spectrometer. We were grateful to the assistance of the Department of Chemistry, Xiamen University in obtaining the MS data.

5,5'-dimethoxy-3,3'-di-tert-butylbiphenyl-2,2'-diol (1)

![Structure of 5,5'-dimethoxy-3,3'-di-tert-butylbiphenyl-2,2'-diol (1)](image)

Off-white powder, m.p. 220 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.43 (s, 9H), 3.77 (s, 3H), 5.04 (s, 1H), 6.62 (d, 1H, J = 3.0 Hz), 6.96(d, 1H, J = 3.0 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 29.5, 35.2, 55.7, 111.8, 115.3, 123.3, 138.9, 145.9, 153.2.

3,3'-di-tert-butylbiphenyl-2,2',5,5'-tetraol (2)

![Structure of 3,3'-di-tert-butylbiphenyl-2,2',5,5'-tetraol (2)](image)

White chalky solid, m.p. 222 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 1.36 (s, 9H), 6.49 (d, 1H, J = 2.9 Hz), 6.68 (d, 1H, J = 2.9 Hz), 8.39 (s, 1H), 8.86 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$) δ 30.3, 35.1, 113.6, 115.4, 131.6, 140.8, 144.1, 151.4.

5,5'-di-tert-butyl-6,6'-dihydroxybiphenyl-3,3'-diyl bis(trifluoromethanesulfonate) (3)

![Structure of 5,5'-di-tert-butyl-6,6'-dihydroxybiphenyl-3,3'-diyl bis(trifluoromethanesulfonate) (3)](image)

Gummy liquid; 1H NMR (500 MHz, CDCl$_3$) δ 1.45 (s, 9H), 5.44 (s, 1H), 7.04 (d, 1H, J = 3.1 Hz), 7.30 (d, 1H, J = 3.1 Hz); 13C NMR (125 MHz, CDCl$_3$) δ 29.2, 35.5, 118.8 (q, J = 320.0 Hz), 121.2, 121.8, 122.5, 140.6, 142.9, 151.7.
6,6′-diacetyl-5,5′-di-tert-butylbiphenyl-3,3′-diyl bis(trifluoromethanesulfonate) (4)

[Diagram of compound 4]

a white solid, m.p. 109 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.38 (s, 9H), 1.85 (s, 3H), 7.06 (d, 1H, J = 2.9 Hz), 7.36 (d, 1H, J = 3.1 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 20.4, 29.9, 35.2, 118.8 (q, J = 321.0 Hz), 120.9, 122.4, 133.6, 144.9, 146.4, 146.6, 167.9.

3,3′-di-tert-butyl-5,5′-divinylbiphenyl-2,2′-diacetate (5)

[Diagram of compound 5]

a white solid, m.p. 118 °C; 1H NMR (500 MHz, CDCl$_3$) δ 1.38 (s, 9H), 1.84 (s, 3H), 5.22 (d, 1H, J = 11.2 Hz), 5.70 (dd, 1H, J_1 = 17.6 Hz, J_2 = 0.6 Hz), 6.70 (dd, 1H, J_1 = 17.6 Hz, J_2 = 10.9 Hz), 7.24 (d, 1H, J = 1.9 Hz), 7.41 (d, 1H, J = 2.1 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 20.8, 30.4, 34.7, 114.0, 125.0, 127.9, 133.4, 135.4, 136.4, 141.3, 146.4, 168.6.

3,3′-di-tert-butyl-5,5′-divinylbiphenyl-2,2′-diol (6)

[Diagram of compound 6]

a white solid, m.p. 55 °C; 1H NMR (500 MHz, CDCl$_3$) δ 1.45 (s, 9H), 5.14 (d, 1H, J = 10.9 Hz), 5.30 (s, 1H), 5.62 (d, 1H, J = 17.6 Hz), 6.66 (dd, 1H, J_1 = 17.6 Hz, J_2 = 11.0 Hz), 7.16 (d, 1H, J = 1.8 Hz), 7.42 (d, 1H, J = 1.6 Hz); 13C NMR (125 MHz, CDCl$_3$) δ 29.5, 35.0, 112.0, 122.5, 126.2, 126.3, 130.2, 136.3, 137.3, 152.0.

2,2′-bisphenoxyphosphorus chloride (7)

[Diagram of compound 7]

yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.20 (d, 2H, J = 7.9 Hz), 7.31 (t, 2H, J = 7.4 Hz), 7.37 (td, 2H, J_1 = 7.7 Hz, J_2 = 1.6 Hz), 7.46 (dd, 2H, J_1 = 7.5 Hz, J_2 = 1.6 Hz); 31P NMR (100 MHz, CDCl$_3$) δ 122.2 (d, J = 1.9 Hz), 126.2, 129.4, 130.1, 130.9 (d, J = 3.5 Hz), 149.2 (d, J = 5.7 Hz); 31P NMR (161.8 MHz, CDCl$_3$) δ 179.4.
6,6’-(3,3’-di-tert-butyl-5,5’-divinylbiphenyl-2,2’ diyl)bis(oxy)didibenzo[1,3,2]dioxaphosphepine (A)

da white solid, m.p. 185°C; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.32 (s, 9H), 5.24 (dd, 1H, \(J_1 = 10.9\) Hz, \(J_2 = 0.5\) Hz), 5.74 (dd, 1H, \(J_1 = 17.6\) Hz, \(J_2 = 0.5\) Hz), 6.75 (dd, 1H, \(J_1 = 17.6\) Hz, \(J_2 = 10.9\) Hz), 6.72 (d, 1H, \(J = 7.6\) Hz), 7.01 (td, 1H, \(J_1 = 7.9\) Hz, \(J_2 = 1.3\) Hz), 7.10-7.15 (m, 2H), 7.23 (td, 1H, \(J_1 = 7.5\) Hz, \(J_2 = 1.2\) Hz), 7.29 (td, 1H, \(J_1 = 7.8\) Hz, \(J_2 = 1.8\) Hz), 7.35 (dd, 1H, \(J_1 = 7.7\) Hz, \(J_2 = 1.6\) Hz), 7.39-7.44 (m, 2H), 7.54 (d, 1H, \(J = 2.3\) Hz); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 30.4, 35.3, 113.4, 122.3, 123.1, 124.8, 124.9, 126.1, 128.7, 128.8, 129.4, 129.6, 129.8, 131.2, 131.3, 131.5, 132.5, 136.4, 141.9, 149.0, 149.7, 150.2; \(^{31}P\) NMR (161.8 MHz, CDCl\(_3\)) \(\delta\) -6.8; HRMS (ESI): m/z calc. for C\(_{48}\)H\(_{44}\)O\(_6\)P\(_2\) [M+H]\(^+\) : 779.2686, found: 779.2697.

tris(4-vinphenyl)phosphane (B)

da white solid, m.p. 75°C; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 5.26 (d, 1H, \(J = 11.1\) Hz), 5.76 (d, 1H, \(J = 17.5\) Hz), 6.69 (dd, 1H, \(J_1 = 17.6\) Hz, \(J_2 = 10.9\) Hz), 7.25-7.29 (m, 2H), 7.35-7.37 (m, 2H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 114.7, 126.3 (d, 6C, \(J = 7.0\) Hz), 133.8 (d, 3C, \(J = 19.4\) Hz), 136.3, 136.6 (d, 6C, \(J = 10.8\) Hz), 137.9; \(^{31}P\) NMR (161.8 MHz, CDCl\(_3\)) \(\delta\) -6.8;

NMR spectra of compounds 1-7 and A, B
500 MHz, CDCl₃

125 MHz, CDCl₃