Bimetallic Ni-Cu Alloy Nanoparticles Supported on Silica for Water-Gas Shift Reaction: Activating Surface Hydroxyls via Enhanced CO Adsorption

M.L. Anga, J.T. Millerb, Y. Cuib, L. Moc, S. Kawia*

aDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576

bSchool of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

cInstitute of Catalysis, Department of Chemistry, Zhejiang University, Tianmushan Road 148, Hangzhou 310028, PR China

*Corresponding author: Phone: +65-6516 6312; Fax: +65-6779 1936; E-Mail address: chekawis@nus.edu.sg
Figure S1 Percentages of CO conversion to CO$_2$ of 5Ni5Cu/SiO$_2$ and 5Ni5Cu/SiO$_2$ (OA) catalysts for 75 h reaction.
Figure S2 FTIR spectra in the hydroxyl region (3500 – 4000 cm$^{-1}$) for (a) 10Ni/SiO$_2$ (OA) and (b) 5Ni5Cu/SiO$_2$ (OA) catalysts.