Electron Supporting Information

Metallacyclic Yttrium Alkyl and Hydrido complexes: synthesis, structures and catalytic activity in intermolecular olefin hydrophosphination and hydroamination

Alexander A. Kissel,^{*a,c*} Tatyana V. Mahrova,^{*a*} Dmitry M. Lyubov,^{*a,c*} Anton V. Cherkasov,^{*a,c*} Georgy K. Fukin,^{*a,c*} Alexander A. Trifonov,^{*a,b,c*,*} Iker Del Rosal,^{*d*} and Laurent Maron^{*d*}

^{*a*} G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603950 Nizhny Novgorod, GSP-445, Russia

^b A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia

^c Nizhny Novgorod State University, 23 Gagarin av., 603950, Nizhny Novgorod, Russia

^{*d*} Université de Toulouse, INSA, UPS, CNRS-UMR5215, LPCNO Avenue de Rangueil 135, 31077 Toulouse, France

Table 1. Crystallographic data and structure refinement details for complexes 2, 3, 5, 6.

Fig 1. ¹H NMR spectra of complex [L¹]Y(CH₂SiMe₃)(THF)₂ (**2**) (400 MHz, C₆D₆, 293 K).

Fig 2. ¹³C{¹H} NMR spectra of complex $[L^1]Y(CH_2SiMe_3)(THF)_2$ (2) (100 MHz, C₆D₆, 293 K).

Fig 3. ¹H NMR spectra of complex $[L^{1}]Y(OEt_{2})(\mu-Me)_{2}Li(TMEDA)$ (4) (200 MHz, C₆D₆, 293 K).

Fig 4. ¹³C{¹H} NMR spectra of complex $[L^{1}]Y(OEt_{2})(\mu-Me)_{2}Li(TMEDA)$ (4) (50 MHz, C₆D₆, 293 K).

Fig 5. ¹H NMR spectra of complex $\{[L^1]Y(THF)(\mu-H)\}_2(\mu-THF)$ (5) (400 MHz, C₆D₆, 293 K).

Fig 6. ¹³C{¹H} NMR spectra of complex { $[L^1]Y(THF)(\mu-H)$ }₂(μ -THF) (**5**) (100 MHz, C₆D₆, 293 K).

Fig 7. ¹H NMR spectra of complex [{[L¹]Y}₃(μ^2 -OMe)₃(μ^3 -O)][Li(DME)₃]₂ (**6**) (200 MHz, C₆D₆, 293 K).

Fig 8. ¹³C{¹H} NMR spectra of complex [{[L¹]Y}₃(μ^2 -OMe)₃(μ^3 -O)][Li(DME)₃]₂ (6) (50 MHz, C₆D₆, 293

K).

	2	3	5	6
Formula	$C_{40}H_{67}N_2O_2SiY(C_7H_8)_2$	C52H94LiN2O4Si2Y	$C_{68}H_{106}N_4O_3Y_2 \cdot (C_6H_{14})_{0.5}$	C111H180Li2N6O16Y3
$M_{ m r}$	909.22	963.32	1248.47	2144.29
Crystal system	Orthorhombic	Triclinic	Monoclinic	Trigonal
Space group	$P2_{1}2_{1}2_{1}$	P-1	C2	R3c
	9.965(1)	12.6489(7)	23.6249(6)	16.5905(7)
b [Å]	19.492(2)	20.352(1)	13.2778(4)	16.5905(7)
	26.587(3)	24.592(1)	12.4270(3)	74.717(3)
α[°]	90	68.123(1)	90	90
β[°]	90	81.393(1)	112.176(3)	90
γ [°]	90	76.144(1)	90	120
V [Å ³]	5164.0(9)	5691.1(5)	3609.8(2)	17810(1)
Z	4	4	2	6
$\rho_{\text{calcd}} [\text{g cm}^{-3}]$	1.169	1.125	1.149	1.200
$\mu [\mathrm{mm}^{-1}]$	1.192	1.107	1.643	1.514
F(000)	1960	2092	1338	6888
Crystal size [mm ³]	0.43×0.17×0.16	0.45×0.30×0.28	0.80×0.40×0.25	0.58×0.35×0.30
θ range [°]	2.42-26.00	1.83-26.00	3.54-27.00	2.46-27.00
Index ranges	-12≤h≤12	−15≤h≤15	−30≤h≤30	−21≤h≤21
e	-24≤k≤24	−25≤k≤25	−16≤k≤16	-21≤k≤21
	-32≤l≤32	−30≤l≤30	-15≤l≤15	–95≤l≤95
Reflns collected	55461	47751	29422	52002
Independent reflns[R_{int}]	10068 [0.0358]	22115 [0.0896]	7829 [0.0534]	8606 [0.0707]
Completeness to θ	99.2	98.8	99.4	99.5
Data / restraints /	10068 / 17 / 556	22115 / 122 / 1180	7829 / 122 / 466	8606 / 34 / 326
goodness-of-fit on F^2	1.038	0.831	1 054	1.057
Final R indices $[L > 2\sigma(L)]$	$R_1 = 0.0341$	$R_1 = 0.0539$	$R_1 = 0.0506$	$R_1 = 0.0657$
That it indices [1/20(1)]	$wR_2 = 0.0841$	$wR_2 = 0.0846$	$wR_2 = 0.1179$	$wR_2 = 0.1670$
R indies (all data)	$R_1 = 0.0369$	$R_1 = 0.1402$	$R_1 = 0.0690$	$R_1 = 0.0810$
it moles (an data)	$wR_2 = 0.0802$	$wR_2 = 0.0976$	$wR_2 = 0.1264$	$wR_2 = 0.1766$
Largest diff. peak/hole	0.846 / -0.264	0.787 / -0.632	0.925 / -0.676	1.182 / -0.746

 Table 1. Crystallographic data and structure refinement details for complexes 2, 3, 5, 6.

Fig 1. ¹H NMR spectra of complex $[L^1]Y(CH_2SiMe_3)(THF)_2$ (2) (400 MHz, C₆D₆, 293 K).

Fig 2. ¹³C{¹H} NMR spectra of complex $[L^1]Y(CH_2SiMe_3)(THF)_2]$ (2) (100 MHz, C₆D₆, 293 K).

Fig 3. ¹H NMR spectra of complex $[L^1]Y(OEt_2)(\mu-Me)_2Li(TMEDA)]$ (4) (200 MHz, C₆D₆, 293 K).

Fig 4. ${}^{13}C{}^{1}H$ NMR spectra of complex $[L^{1}]Y(OEt_{2})(\mu-Me)_{2}Li(TMEDA)]$ (4) (50 MHz, C₆D₆, 293 K).

Fig 5. ¹H NMR spectra of complex $\{[L^1]Y(THF)(\mu-H)]\}_2(\mu-THF)$ (5) (400 MHz, C₆D₆, 293 K).

Fig 6. ¹³C{¹H} NMR spectra of complex {[L¹]Y(THF)(μ -H)]}₂(μ -THF) (**5**) (100 MHz, C₆D₆, 293 K).

 $\label{eq:Fig.7.} \mbox{Fig.7.} {}^1\mbox{H NMR spectra of complex } \{[L^1]Y\}_3(\mu^2\mbox{-}OMe)_3(\mu^3\mbox{-}O)\}\{\mbox{Li}(DME)_3\}_2\mbox{ (6) } (200\mbox{ MHz, C_6D_6, 293 K)}.$

Fig 8. ¹³C{¹H} NMR spectra of complex {[L¹]Y}₃(μ^2 -OMe)₃(μ^3 -O)}{Li(DME)₃}₂ (6) (50 MHz, C₆D₆, 293 K).

Computational details

In view of the good performance of density functional theory (DFT), we performed DFT calculations at the B3PW91 level of theory on all stationary points of the potential energy surfaces (PES) we studied using the GAUSSIAN09 program suite.ⁱ The equilibrium structures were fully optimized at the Becke's 3-parameter hybrid functionalⁱⁱ combined with the non-local correlation functional provided by Perdew/Wang.ⁱⁱⁱ RECP (augmented by a *f* polarization function, $\alpha = 1.0$) was used to represent the yttrium, chlorine and silicon.^{iv} For the rest of non-metal atoms the 6-31G(d,p) basis set was used.^v In all computations no symmetry constraints were imposed on the geometry. Full geometry optimization was performed for each structure using Schlegel's analytical gradient method^{vi} and the attainment of the energy minimum was verified by calculating the vibrational frequencies that result in absence of imaginary eigenvalues. The nature of the stationary points (local minima, transition states) were identified by the number of imaginary frequencies

Cartesian coordinates:

$[2,6-iPr_2C_6H_3NC(Me)=C(Me)NC_6H_3iPr_2-2,6]Y(OtBu)(THF)(DME)$

114

scf done: -2012.840109

Y	3.475478	-0.020559	4.735132
N	1.722990	1.249470	5.275703
N	4.577441	1.848568	5.246433
0	3.549959	-0.465192	2.699108
0	2.151323	-2.014249	5.564809
0	4.381868	-0.716376	7.115845
0	5.281184	-1.890001	4.869609
С	0.359185	1.201004	5.650915
С	-0.064053	1.746282	6.896465
С	-1.390291	1.600039	7.313178
Н	-1.694972	2.022494	8.268071
С	-2.327094	0.933264	6.534328
Н	-3.354033	0.824858	6.873561
С	-1.931344	0.426235	5.304070
Н	-2.666735	-0.069956	4.674549
С	-0.617907	0.555712	4.837939
С	0.890172	2.521263	7.786005
Н	1.888455	2.395580	7.356251

С	0.913904	1.994855	9.227796
Н	1.117769	0.918881	9.262151
Н	-0.041340	2.160495	9.738542
Н	1.686095	2.506463	9.812892
С	0.554815	4.019762	7.765960
Н	0.596614	4.418168	6.748359
Н	1.259242	4.588673	8.383051
Н	-0.453346	4.202457	8.156406
С	-0.315182	0.038639	3.439787
Н	0.755465	0.183983	3.261422
С	-1.093287	0.825429	2.372948
Н	-0.890449	1.897622	2.432374
Н	-2.174139	0.684875	2.488627
Н	-0.822872	0.483610	1.367010
С	-0.614116	-1.458420	3.292537
Н	-0.043181	-2.043026	4.016895
Н	-0.352343	-1.808053	2.287410
Н	-1.677384	-1.675297	3.446542
С	2.253023	2.393703	4.632681
С	1.310033	3.230122	3.791854
Н	1.545923	4.296195	3.841435
Н	0.283973	3.108868	4.147774
Н	1.326240	2.943264	2.731960
С	3.614676	2.670800	4.608233
С	4.150275	3.737529	3.673179
Н	3.521941	4.630718	3.630445
Н	4.248384	3.365816	2.643202
Н	5.146421	4.050540	3.997705
С	5.778756	2.398757	5.729536
С	7.033088	1.973750	5.193226
С	8.226637	2.425303	5.766269
Н	9.172819	2.092242	5.345639
С	8.238411	3.321680	6.826463

Η	9.176977	3.665698	7.252890
С	7.024339	3.792563	7.309372
Н	7.022371	4.519547	8.118219
С	5.801834	3.355904	6.790877
С	7.134203	1.143276	3.921208
Н	6.136994	0.749442	3.701242
С	8.100732	-0.041811	4.032040
Н	7.846696	-0.694954	4.872338
Н	9.137034	0.285544	4.171845
Н	8.075477	-0.639611	3.113836
С	7.546459	2.037961	2.740537
Н	6.833800	2.854220	2.594909
Н	7.599070	1.460524	1.810073
Н	8.532355	2.484121	2.915146
С	4.528693	3.951451	7.374872
Н	3.691178	3.361157	6.994042
С	4.493230	3.909600	8.909963
Н	4.658705	2.901367	9.302210
Н	3.521978	4.258408	9.277127
Н	5.254474	4.560758	9.353677
С	4.332710	5.401093	6.901981
Н	4.315166	5.468721	5.811999
Н	5.146672	6.041188	7.262826
Н	3.390259	5.811285	7.282190
С	3.498234	-0.442215	1.299288
С	2.693625	0.775572	0.822317
Н	3.169035	1.698626	1.168122
Н	1.678844	0.743198	1.228368
Н	2.625528	0.812883	-0.271288
С	4.920644	-0.350179	0.723182
Н	5.416806	0.550237	1.096423
Н	4.908366	-0.308518	-0.372085
Н	5.521780	-1.217119	1.018288

С	2.824238	-1.730188	0.799066
Н	3.392131	-2.609685	1.123876
Н	2.754693	-1.756028	-0.294462
Н	1.813596	-1.808629	1.211321
С	1.446614	-1.971494	6.825625
Н	0.924747	-1.013862	6.875108
Н	2.178929	-2.035658	7.640414
С	0.529200	-3.181808	6.795956
Н	0.228925	-3.501041	7.797551
Н	-0.375038	-2.954992	6.223230
С	1.396691	-4.217195	6.072661
Н	2.073029	-4.705691	6.782780
Н	0.813043	-4.997674	5.577575
С	2.188583	-3.370183	5.071739
Н	3.231456	-3.688974	4.986552
Н	1.743468	-3.371496	4.072245
С	4.210715	0.267184	8.135717
Η	4.325681	-0.199162	9.123750
Н	3.205254	0.670462	8.027731
Н	4.936756	1.075746	8.010799
С	5.706805	-1.223955	7.106819
Н	5.978101	-1.600184	8.104797
Н	6.407273	-0.422942	6.832763
С	5.770574	-2.357897	6.115411
Н	6.813088	-2.691767	6.015358
Н	5.164233	-3.211369	6.454525
С	5.608492	-2.747886	3.781869
Н	6.692822	-2.756464	3.619837
Н	5.094421	-2.337706	2.914028
Н	5.263876	-3.772852	3.976243

Complex 1

126

scf done: -2205.999533

Y	-5.517221	13.894040	4.014225
Li	-4.125404	14.538933	7.298533
Cl	-3.075214	13.702156	5.359911
Cl	-6.154291	15.195056	6.284469
0	-4.622241	16.170246	3.335115
0	-4.176578	12.816067	2.273152
0	-3.116273	16.062445	8.104075
0	-4.442747	13.409912	8.867981
N	-7.244252	14.152981	2.601109
N	-6.719309	12.032341	4.286756
С	-7.759318	15.330068	1.997961
С	-7.252488	15.802302	0.754360
С	-7.706022	17.019276	0.233909
Н	-7.307495	17.372391	-0.715183
С	-8.663834	17.779107	0.894201
Н	-9.009496	18.719821	0.472866
С	-9.186437	17.307354	2.092685
Н	-9.950611	17.888202	2.603409
С	-8.758387	16.101281	2.656537
С	-6.233129	15.013114	-0.050723
Н	-6.038469	14.097454	0.514408
С	-4.904058	15.767533	-0.191355
Н	-4.495474	16.016152	0.791519
Н	-5.032809	16.702050	-0.749812
Н	-4.165990	15.162953	-0.733054
С	-6.769362	14.626304	-1.436711
Н	-7.719233	14.089619	-1.365402
Н	-6.053314	13.984291	-1.964129
Н	-6.935346	15.511326	-2.061472
С	-9.406108	15.626699	3.946530
Н	-8.774867	14.825552	4.342679
С	-10.797549	15.040363	3.662760
Н	-10.740055	14.206608	2.957813

Η	-11.463068	15.800077	3.234660
Н	-11.259297	14.672611	4.586069
С	-9.497704	16.720657	5.018000
Н	-8.516714	17.151886	5.237720
Н	-9.885626	16.298554	5.950933
Н	-10.171569	17.533339	4.722379
С	-7.909633	12.917391	2.385210
С	-8.766163	12.766845	1.151482
Н	-9.254955	13.712694	0.899997
Н	-8.186197	12.468318	0.264352
Н	-9.551588	12.019154	1.282096
С	-7.646582	11.862706	3.219857
С	-8.133537	10.464683	2.926527
Н	-9.096897	10.450502	2.411059
Н	-7.425561	9.907490	2.291859
Н	-8.247933	9.884548	3.846748
С	-6.857069	11.194069	5.421521
С	-8.025492	11.239593	6.238523
С	-8.134305	10.389520	7.343221
н	-9.036975	10.428541	7.949304
С	-7.122200	9.500917	7.686458
Н	-7.230138	8.841856	8.544354
С	-5.974542	9.463236	6.904290
Н	-5.185701	8.757143	7.152811
С	-5.821767	10.282084	5.779858
С	-9.177403	12.192414	5.957142
Н	-8.907845	12.777204	5.074770
С	-10.475313	11.436712	5.635479
Н	-10.344915	10.758367	4.787729
Н	-11.276124	12.140903	5.383764
Н	-10.816493	10.841512	6.491002
С	-9.400008	13.168634	7.121334
Н	-8.502223	13.762821	7.311961

Η	-9.671830	12.641828	8.044164
Н	-10.218686	13.858800	6.886897
С	-4.584096	10.080664	4.917895
Н	-4.526386	10.933571	4.235233
С	-4.728358	8.805256	4.071561
Н	-5.631702	8.833998	3.454824
Н	-4.797525	7.919348	4.713511
Η	-3.861755	8.669543	3.411966
С	-3.277512	10.039309	5.718792
Η	-3.154102	10.941993	6.321686
Η	-2.419426	9.976068	5.039450
Η	-3.229523	9.165736	6.379363
С	-3.232007	16.571837	3.268165
Н	-2.780723	16.110521	2.384329
Η	-2.728603	16.184272	4.158664
С	-3.238336	18.096341	3.204663
Η	-2.347449	18.529997	3.667724
Η	-3.280487	18.439548	2.165112
С	-4.539118	18.447912	3.928555
Η	-4.409215	18.383080	5.014421
Η	-4.916302	19.444196	3.682483
С	-5.467723	17.346852	3.447744
Η	-6.270432	17.111802	4.147789
Η	-5.896638	17.562917	2.463922
С	-2.773757	12.978324	1.943266
Η	-2.210997	13.013813	2.878136
Η	-2.661612	13.930667	1.411520
С	-2.428551	11.800878	1.040847
Η	-2.131998	10.933017	1.639698
Н	-1.611751	12.036190	0.353048
С	-3.761626	11.533588	0.338039
Н	-3.835057	10.527970	-0.084703
Н	-3.924109	12.258044	-0.467603

С	-4.754226	11.752389	1.466956
Н	-5.751039	12.073046	1.159851
Н	-4.854886	10.864197	2.097722
С	-1.840081	16.563507	7.669633
Н	-1.875298	16.738325	6.587112
Н	-1.085742	15.797302	7.869213
С	-1.630041	17.858847	8.444018
Н	-0.959653	18.551417	7.927949
Н	-1.207853	17.650277	9.433541
С	-3.063797	18.380501	8.573345
Н	-3.195155	19.095315	9.390022
Н	-3.377818	18.867243	7.643421
С	-3.852314	17.093425	8.794285
Н	-3.904477	16.829288	9.858240
Н	-4.866465	17.120814	8.385951
С	-5.692360	12.729032	9.144305
Н	-6.068083	12.288948	8.218449
Н	-6.409660	13.478380	9.497803
С	-5.366594	11.692527	10.215429
Н	-5.088420	10.743685	9.746279
Н	-6.214792	11.504441	10.878598
С	-4.163698	12.314396	10.928828
Н	-4.489312	13.080800	11.641765
Н	-3.551530	11.585371	11.466966
С	-3.419070	12.955683	9.765550
Н	-2.809527	13.819096	10.047464
Н	-2.780599	12.225866	9.249049

Complex 2

113

scf done: -1866.335290

- Y 1.266553 18.921618 6.577420
- Si 3.456786 22.245440 6.398910

0	-0.898910	18.327090	5.534426
0	-0.582618	19.577147	8.178069
N	2.175278	17.582918	5.082095
N	2.172311	17.495572	7.978947
С	3.363123	17.412235	5.838821
С	3.362493	17.351722	7.228048
С	4.680056	17.511316	5.091891
Н	5.398090	16.742521	5.394597
Н	5.169777	18.482741	5.242347
Н	4.509743	17.393499	4.018964
С	4.678111	17.285348	7.971781
Н	5.398310	16.636335	7.467451
Н	4.518815	16.881499	8.975075
Н	5.154186	18.268179	8.087689
С	2.074735	17.060865	3.776842
С	1.873009	17.934210	2.668347
С	1.626761	17.398716	1.399316
Н	1.460280	18.077090	0.565410
С	1.624294	16.029506	1.169985
Н	1.441192	15.634202	0.174323
С	1.882425	15.176012	2.235275
Н	1.904199	14.102355	2.062349
С	2.099744	15.657028	3.529304
С	1.983389	19.446003	2.786807
Н	2.300650	19.670710	3.811529
С	0.643549	20.153562	2.544757
Н	-0.123560	19.791975	3.236549
Н	0.278603	19.975781	1.526146
Н	0.743637	21.236831	2.679108
С	3.056134	20.000433	1.837557
Н	4.022393	19.516331	2.008786
Н	3.186058	21.076761	1.987121
н	2.787667	19.841302	0.787231

С	2.336702	14.641802	4.636595
Н	2.395757	15.191261	5.579391
С	1.183291	13.633172	4.742586
Н	0.225777	14.132519	4.922493
Н	1.357085	12.933619	5.566975
Н	1.078753	13.038317	3.828516
С	3.670077	13.903212	4.445116
Н	3.856869	13.217901	5.279611
Н	4.507948	14.603508	4.387272
Н	3.667667	13.311485	3.522205
С	2.064418	17.048937	9.317447
С	2.368196	17.903645	10.414696
С	2.110935	17.467242	11.719234
Н	2.339061	18.128906	12.551906
С	1.582455	16.209043	11.978166
Н	1.391554	15.890065	12.999564
С	1.318850	15.358777	10.911534
Η	0.923922	14.364162	11.107136
С	1.555290	15.750074	9.590220
С	2.979978	19.283614	10.232899
Η	3.161376	19.425402	9.162532
С	2.026598	20.395103	10.691666
Η	1.074756	20.335377	10.157064
Н	2.461745	21.383253	10.504602
Н	1.816070	20.321634	11.765016
С	4.327255	19.411450	10.959223
Н	5.026667	18.630773	10.648249
Н	4.206344	19.335595	12.045727
Н	4.787790	20.382123	10.746114
С	1.281627	14.756980	8.475752
Н	1.462764	15.282525	7.533787
С	-0.174531	14.272332	8.470440
Н	-0.872120	15.112886	8.385100

Η	-0.427204	13.727179	9.386964
Н	-0.353110	13.596315	7.626992
С	2.252261	13.569837	8.560459
Н	3.291614	13.908284	8.512277
Н	2.085433	12.866060	7.737859
Н	2.125027	13.017687	9.498822
С	1.856492	21.276495	6.558158
Н	1.166094	21.714676	5.808432
Н	1.442097	21.585102	7.537740
С	4.801984	21.587135	7.580249
Н	5.020452	20.535108	7.370759
Н	4.482738	21.664114	8.624817
Н	5.732427	22.155683	7.472969
С	4.160232	22.172771	4.630380
Н	4.382572	21.142511	4.336448
Н	5.085398	22.754420	4.552681
Н	3.446132	22.584271	3.908852
С	3.223456	24.100482	6.820666
Н	2.490648	24.563251	6.149802
Н	4.161871	24.659644	6.729407
Н	2.858460	24.225259	7.846700
С	-2.062860	19.159866	5.331473
Н	-1.719863	20.101857	4.891895
Н	-2.521165	19.371015	6.302775
С	-2.999592	18.379372	4.397654
Н	-3.426482	19.019030	3.621119
Н	-3.829391	17.946260	4.965830
С	-2.102957	17.270969	3.833251
Н	-2.663034	16.378794	3.541620
Н	-1.534965	17.620638	2.966193
С	-1.157559	17.010167	4.990169
Н	-1.624698	16.391231	5.768638
Н	-0.195011	16.585100	4.707717

С	-1.228021	18.579864	9.010178
Н	-0.451137	17.951741	9.452442
Н	-1.871245	17.962474	8.369396
С	-2.040939	19.368135	10.027217
Н	-2.900800	18.803134	10.396153
Н	-1.416859	19.638531	10.885079
С	-2.429763	20.615601	9.229942
Н	-3.281575	20.401694	8.573678
Н	-2.696251	21.468224	9.859898
С	-1.169841	20.879036	8.415142
Н	-1.354466	21.355539	7.448691
Н	-0.448526	21.489401	8.968764

Complex 3

103

scf done: -1564.548103

Y	12.127311	23.583205	21.199022
Si	14.987942	20.907349	20.566729
Si	11.656529	27.401176	20.196202
N	10.207789	22.498604	21.114973
N	11.748779	23.397665	23.402876
С	10.424664	21.678910	22.247907
С	11.173697	22.102444	23.334446
С	9.998866	20.232119	22.127074
Н	9.894415	19.738015	23.095239
Н	10.712911	19.644864	21.531076
Н	9.035072	20.168617	21.611583
С	11.611388	21.092679	24.383240
Н	10.768486	20.555780	24.832398
Н	12.140613	21.599084	25.193729
Н	12.289744	20.335608	23.967414
С	9.080422	22.317944	20.295871
С	9.220682	21.810973	18.972485
С	8.093871	21.693154	18.153167

Η	8.214901	21.312469	17.140788
С	6.824388	22.035736	18.601998
Н	5.959300	21.926955	17.951912
С	6.682362	22.528237	19.894003
Н	5.694569	22.814692	20.250451
С	7.781568	22.689306	20.740959
С	10.568556	21.387729	18.412943
Н	11.281255	21.409710	19.245065
С	10.549881	19.953658	17.867683
Н	10.210682	19.245164	18.629924
Н	11.553905	19.652818	17.547248
Н	9.886370	19.854390	17.000174
С	11.067695	22.369844	17.343288
Н	11.136462	23.388016	17.739184
Н	10.386066	22.394529	16.484116
Н	12.060059	22.078911	16.978455
С	7.563988	23.309430	22.110352
Н	8.551513	23.435566	22.563219
С	6.924899	24.701163	21.996700
Н	7.527767	25.355523	21.359452
Н	6.841207	25.170464	22.983025
Н	5.917376	24.652689	21.566175
С	6.731436	22.396199	23.020241
Н	7.212679	21.421584	23.145501
Н	5.730695	22.224954	22.604138
Н	6.605507	22.841839	24.013920
С	12.038721	23.992391	24.633539
С	11.076444	24.138312	25.676717
С	11.434706	24.768583	26.871318
Н	10.682713	24.877619	27.650667
С	12.706204	25.286420	27.080287
Н	12.958964	25.783428	28.013731
С	13.648648	25.156811	26.066486

Η	14.649695	25.551098	26.222960
С	13.351699	24.513099	24.863981
С	9.621779	23.723749	25.509032
Н	9.528370	23.197542	24.555728
С	8.719780	24.965863	25.448619
Н	7.672030	24.682462	25.292599
Н	9.020597	25.627426	24.630962
Н	8.773773	25.540932	26.380959
С	9.145856	22.767284	26.611714
Н	9.786060	21.882387	26.675202
Н	8.120973	22.431668	26.414059
Н	9.147856	23.249207	27.596929
С	14.438928	24.376027	23.813054
Н	14.183710	23.492438	23.210972
С	14.472549	25.594793	22.879972
Н	13.497869	25.797478	22.419723
Н	15.205209	25.462924	22.074738
Н	14.740337	26.498127	23.441309
С	15.836604	24.128424	24.392121
Н	15.834650	23.289760	25.095045
Н	16.228685	25.008373	24.915774
Н	16.540341	23.895794	23.585530
С	14.112129	22.516010	20.221447
Н	13.859740	22.516434	19.143747
Н	14.861997	23.323844	20.335392
С	16.554319	20.628157	19.483757
Н	17.279960	21.435247	19.638396
Н	16.292217	20.620541	18.419305
Н	17.051544	19.678246	19.715752
С	13.858814	19.399029	20.242233
Н	12.978746	19.431433	20.892197
Н	14.388076	18.457585	20.430342
Н	13.507467	19.386159	19.204926

С	15.588713	20.776652	22.377908
Н	14.751258	20.866881	23.077477
Н	16.306462	21.569901	22.612945
Н	16.083191	19.815175	22.559998
С	11.726926	25.570316	19.853141
Н	12.371572	25.432343	18.965015
Н	10.709793	25.271811	19.529232
С	13.404613	28.181037	20.146029
Н	14.066294	27.728609	20.890941
Н	13.365761	29.259747	20.336708
Н	13.859176	28.029229	19.160241
С	10.613179	28.383101	18.914232
Н	9.581059	28.014164	18.895926
Н	11.024349	28.260970	17.905546
Н	10.583551	29.455968	19.141051
С	10.876591	27.791388	21.898735
Н	11.457226	27.347508	22.714040
Н	9.863009	27.378453	21.954400
Н	10.810193	28.871411	22.075402

ⁱ Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

- ⁱⁱ A. D. Becke, J. Chem. Phys., 1993, **98**, 5648.
- ⁱⁱⁱ J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244.
- ^{iv} D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta* 1990, **77**, 123.
- ^v (a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 1971, 54, 724; (b) W. J. Hehre, R.
- Ditchfield and J. A. Pople, J. Chem. Phys. 1972, 56, 2257. (c) P. C. Hariharan and J. A. Pople,
- Theor. Chim. Acta. 1973, 28, 213.
- ^{vi} H. B. Schlegel, J. Comput. Chem., 1982, 3, 214.