## Supplementary information for

# Unexpected Fragmentation Reaction of Triphosphaferrocene: Formation of supramolecular assemblies containing the (1,2,4-P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>)<sup>-</sup> ligand

C. Heindl,<sup>*a*</sup> A. Schindler, Eugenia V. Peresypkina<sup>*b,c*</sup>, Alexander V. Virovets<sup>*b,c*</sup>, M. Zabel<sup>*a*</sup>, D. Lüdeker<sup>d</sup>, G. Brunklaus<sup>d</sup>, and M. Scheer<sup>*c*</sup>

<sup>a</sup> Institut für Anorganische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany

<sup>b</sup> A. V. Nikolaev Institute of Inorganic Chemistry, SB RAS, Ak. Lavrentiev prosp. 3, Novosibirsk 630090, Russia

<sup>c</sup> Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia

<sup>d</sup> Institut für Physikalische Chemie, Westfälische Wilhems-Universität Münster, Corrensstr. 28, 48149 Münster, Germany

## 1. Experimental Part

All reactions were performed under an inert atmosphere of dry nitrogen or argon with standard vacuum, Schlenk, and glove-box techniques. Solvents were purified, dried and degassed prior to use by standard procedures.  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  was synthesized following the reported procedure. Commercially available chemicals were used without further purification. Solution NMR spectra were recorded on either Bruker Avance 300 or 400 spectrometer. The corresponding ESI-MS spectra were acquired on a ThermoQuest Finnigan MAT TSQ 7000 mass spectrometer, while elemental analyses were performed on a Vario EL III apparatus.

#### 1.1Synthesis of 2

In a thin Schlenk tube a solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (30 mg, 0.06 mmol) in toluene (6 mL) is layered with a solution of CuCl (11 mg, 0.11 mmol) in CH<sub>3</sub>CN (5 mL). After complete diffusion the solution is filtered and concentrated to 5 mL. Within a few weeks at room temperature red crystals of  $2 \cdot 6$  CH<sub>3</sub>CN can be obtained. The mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) and dried in vacuo.

Analytical data of **2**: **Yield**: 12 mg (0.0058 mmol, 96%)

<sup>1</sup>**H NMR** (CD<sub>3</sub>CN): *δ* [ppm] = 2.06 (s, 6H, *o*-CH<sub>3</sub>), 2.24 (s, 3H, *p*-CH<sub>3</sub>), 6.88 (s, 2H, *aryl*-H).

<sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 20.97 (*o*-CH<sub>3</sub>), 21.96 (*p*-CH<sub>3</sub>), 127.96 (*aryl*-CH), 134.89 (*aryl*-<u>C</u>CH<sub>3</sub>), 135.92 (*aryl*-<u>C</u>CH<sub>3</sub>), 137.12 (*aryl*-C).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (CD<sub>3</sub>CN):  $\delta$  [ppm] = 123.6 (br), 155.0 (br), 209.0 (br), 216.0 (br).

Negative ion ESI-MS (Et<sub>2</sub>O/CH<sub>3</sub>CN): m/z (%) = 894.2 [Cu<sub>7</sub>Cl<sub>8</sub>{CH<sub>2</sub>Cl<sub>2</sub>}{CH<sub>3</sub>CN}<sub>2</sub>]<sup>-</sup>, 866.2 [Cu<sub>8</sub>Cl<sub>9</sub>{CH<sub>3</sub>CN}]<sup>-</sup>, 796.1 [Cu<sub>6</sub>Cl<sub>7</sub>{CH<sub>2</sub>Cl<sub>2</sub>}{CH<sub>3</sub>CN}<sub>2</sub>]<sup>-</sup>, 766.3 [Cu<sub>7</sub>Cl<sub>8</sub>{CH<sub>3</sub>CN}]<sup>-</sup>, 740.3 [Cu<sub>6</sub>Cl<sub>7</sub>{Et<sub>2</sub>O}{CH<sub>3</sub>CN}]<sup>-</sup>, 668.2

 $\begin{bmatrix} Cu_6Cl_7\{CH_3CN\} \end{bmatrix}^-, \ 640.4 \ \begin{bmatrix} Cu_5Cl_6\{Et_2O\}\{CH_3CN\} \end{bmatrix}^-, \ 612.3 \ \begin{bmatrix} Cu_5Cl_6\{CH_3CN\}_2 \end{bmatrix}^-, \ 584.3 \ \begin{bmatrix} Cu_4Cl_5\{Et_2O\}\{CH_3CN\}_2 \end{bmatrix}^-, \ 542.5 \ \begin{bmatrix} Cu_3Cl_4\{CH_2Cl_2\}\{CH_3CN\}_3 \end{bmatrix}^-, \ 514.4 \ \begin{bmatrix} Cu_4Cl_5\{CH_3CN\}_2 \end{bmatrix}^-, \ 486.5 \ \begin{bmatrix} Cu_3Cl_4\{Et_2O\}\{CH_3CN\}_2 \end{bmatrix}^-, \ 414.5 \ \begin{bmatrix} Cu_3Cl_4\{CH_3CN\}_2 \end{bmatrix}^-, \ 386.4 \ \begin{bmatrix} Cu_2Cl_3\{Et_2O\}\{CH_3CN\}_2 \end{bmatrix}^-, \ 360.4 \ \begin{bmatrix} Cu_4Cl_3 \end{bmatrix}^-, \ 288.5 \ \begin{bmatrix} CuCl_2\{Et_2O\}\{CH_3CN\}_2 \end{bmatrix}^-, \ 232.6 \ \begin{bmatrix} Cu_2Cl_3 \end{bmatrix}^-, \ 134.6 \ (100) \ \begin{bmatrix} CuCl_2 \end{bmatrix}^-$ 

**Elemental analysis**: Calculated (%) for  $[(P_3C_2Mes_2)_4Cl_{16}Cu_{20}(CH_3CN)_{11}]$  (3712.9 g/mol): C 32.99, H 3.28, N 4.15; found: C 32.02, H 3.37, N 4.55.

Analytical data of the mother liquor of **2** (after 2 hours of stirring):

**Negative ion ESI-MS** (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN): m/z (%) = 332.5 [Cu<sub>3</sub>Cl<sub>4</sub>]<sup>-</sup>, 232.6 (100) [Cu<sub>3</sub>Cl<sub>4</sub>]<sup>-</sup>, 160.7 [FeCl<sub>3</sub>]<sup>-</sup>, 134.7 [CuCl<sub>2</sub>]<sup>-</sup>

**EI-MS** (70 eV): 326.2 (100) [Cp\*<sub>2</sub>Fe]

## 1.2 Synthesis of 3

In a thin Schlenk tube a solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (25 mg, 0.05 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8 mL) is layered with a solution of CuBr (33 mg, 0.23 mmol) in CH<sub>3</sub>CN (20 mL). After complete diffusion the solution is concentrated to 15 mL and layered with Et<sub>2</sub>O. While storing at 8°C the formation of bright red plates of  $3 \cdot 6$  CH<sub>3</sub>CN can be observed. After complete diffusion the slightly turbid mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) and dried in vacuo.

Analytical data of **3**:

Yield: 28 mg (0.007 mmol, crystalline, 56% referred to [Cp\*Fe( $\eta^5$ -P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>)])

<sup>1</sup>**H** NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 1.95 (s, CH<sub>3</sub>CN), 2.04 (s, 6H, *o*-CH<sub>3</sub>), 2.14 (s, 6H, *o*-CH<sub>3</sub>), 2.26 (s, 6H, *p*-CH<sub>3</sub>), 6.90 (s, 4H, *aryl*-H).

<sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 21.11 (*p*-CH<sub>3</sub>), 22.82 (*o*-CH<sub>3</sub>), 128.60 (*aryl*-<u>C</u>H), 136.91 (*aryl*-<u>C</u>CH<sub>3</sub>), 138.31 (*aryl*-<u>C</u>CH<sub>3</sub>).

<sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 136.0 (br, (3)-2P), 160.2 (br, (4)-1P), 203.9 (br, (4)-2P), 217.3 (br, (3)-1P).

**Positive ion ESI-MS** (CH<sub>3</sub>CN): m/z (%) = 2455.0 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>10</sub>Br<sub>5</sub>]<sup>+</sup>, 2313.1 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>9</sub>Br<sub>4</sub>]<sup>+</sup>, 2169.2  $1648.1 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{6}Br_{2}\{CH_{3}CN\}]^{+}, \quad 1607.0 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{6}Br_{2}]^{+}, \quad 1506.2 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{5}Br\{CH_{3}CN\}]^{+}, \quad 1607.0 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{5}Br\{CH_{3}CN\}]^{+}, \quad 1607.0 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{6}Br_{2}]^{+}, \quad 1506.2 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{5}Br\{CH_{3}CN\}]^{+}, \quad 1607.0 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{6}Br_{2}]^{+}, \quad 1506.2 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{5}Br\{CH_{3}CN\}]^{+}, \quad 1607.0 \quad [\{P_{3}C_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2$ 1330.8  $[{P_3C_2Mes_2}_2Cu_7Br_4]^+,$  $[{P_3C_2Mes_2}_3Cu_5Br]^+,$ 1474.7 1463.3  $[{P_3C_2Mes_2}_2Cu_6Br_3]^+,$ 1319.3 1230.0  $[{P_3C_2Mes_2}_2Cu_5Br_2{CH_3CN}]^+,$ 1188.9  $[{P_3C_2Mes_2}_3Cu_4]^+,$  $[{P_3C_2Mes_2}_2Cu_5Br_2]^+,$ 1127.2  $[\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{4}Br\{CH_{3}CN\}_{2}]^{+}, 1097.6 \quad [\{P_{3}C_{2}Mes_{2}\}Cu_{6}Br_{4}\{CH_{3}CN\}]^{+}, 1054.5 \quad [\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{4}Br]^{+}, 953.7 \quad [\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{4}Br_{3}]^{+}, 1097.6 \quad [\{P_{3}C_{2}Mes_{2}Br_{3}Br_{3}Br_{4}Br_{3}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{4}Br_{$  $[{P_3C_2Mes_2}Cu_5Br_3{CH_3CN}]^+, 144.9 (100) [Cu{CH_3CN}_2]^+$ 

**Negative ion ESI-MS** (CH<sub>3</sub>CN): m/z (%) = 798.2 [Cu<sub>5</sub>Br<sub>6</sub>]<sup>-</sup>, 654.4 [Cu<sub>4</sub>Br<sub>5</sub>]<sup>-</sup>, 510.5 [Cu<sub>3</sub>Br<sub>4</sub>]<sup>-</sup>, 366.4 [Cu<sub>2</sub>Br<sub>3</sub>]<sup>-</sup>, 222.5 (100) [CuBr<sub>2</sub>]<sup>-</sup>

## 1.3 Synthesis of 4

In a thin Schlenk tube a solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (50 mg, 0.09 mmol) in  $CH_2Cl_2$  (5 mL) is layered with a solution of CuBr (129 mg, 0.9 mmol) in  $CH_3CN$  (5 mL). During diffusion the formation of small orange-red plates of  $\mathbf{4} \cdot CH_3CN$  and a small amount of bright yellow plates of  $[Cu(CH_3CN)Br]_n$  (identification by unit cell parameters and comparison with CCDC data base) due to the excess of CuBr can be observed.

After complete diffusion the slightly turbid mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) dried in vacuo. The small amount of big bright plates of  $[Cu(CH_3CN)Br]_n$  can easily be removed mechanically under the microscope to give pure **4**.

Analytical data of **4**:

Yield: 85 mg (0.041 mmol, crystalline, 92% referred to [Cp\*Fe(n<sup>5</sup>-P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>)])

<sup>1</sup>**H** NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 1.95 (s, CH<sub>3</sub>CN), 2.04 (s, 6H, *o*-CH<sub>3</sub>), 2.14 (s, 6H, *o*-CH<sub>3</sub>), 2.26 (s, 6H, *p*-CH<sub>3</sub>), 6.90 (s, 4H, *aryl*-H).

<sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 21.11 (*p*-CH<sub>3</sub>), 22.82 (*o*-CH<sub>3</sub>), 128.60 (*aryl*-<u>C</u>H), 136.91 (*aryl*-<u>C</u>CH<sub>3</sub>), 138.31 (*aryl*-<u>C</u>CH<sub>3</sub>).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (CD<sub>3</sub>CN):  $\delta$  [ppm] = 136.0 (br, (3)-2P), 160.2 (br, (4)-1P), 203.9 (br, (4)-2P), 217.3 (br, (3)-1P).

**Positive ion ESI-MS** (CH<sub>3</sub>CN): m/z (%) = 3438.2 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>17</sub>Br<sub>12</sub>]<sup>+</sup>, 3293.4 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>16</sub>Br<sub>11</sub>]<sup>+</sup>, 3163.0  $[{P_3C_2Mes_2}_4Cu_{15}Br_{10}]^+,$ 3019.1  $[{P_3C_2Mes_2}_4Cu_{14}Br_9]^+,$ 2873.1  $[{P_3C_2Mes_2}_4Cu_{13}Br_8]^+,$ 2733.1  $[\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{12}Br_{7}]^{+}, 2591.2 \ [\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{11}Br_{6}]^{+}, 2457.2 \ [\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{10}Br_{5}]^{+}, 2313.0 \ [\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{9}Br_{4}]^{+}, 2313.0 \ [\{P_{3}C_{2}Mes_{2}Br_{4}]^{+}, 2313.0 \ [\{P_{3}C_{2}Mes_{2}Br_{4}]^{+}, 2313.0 \ [\{P_{3}C_{2}Mes_{2}Br_{4}]^{+}, 2313.0 \ [\{P_{3}C_{2}Mes_{2}Br_{4}]^{+}, 2313.0 \ [\{P_{$  $2169.1 \quad [\{P_3C_2Mes_2\}_4Cu_8Br_3]^+, \quad 2025.1 \quad [\{P_3C_2Mes_2\}_4Cu_7Br_2]^+, \quad 1881.3 \quad (100) \quad [\{P_3C_2Mes_2\}_4Cu_6Br_1]^+, \quad 1739.4 \quad (100) \quad [\{P_3C_2Mes_2\}_4Cu_6Br_1]^+, \quad (100) \quad (10) \quad [\{P_3C_2Mes_2\}_4Cu_6Br_1]^+, \quad (100) \quad (10) \quad [\{P_3C_2Mes_2\}_4Cu_6Br_1]^+, \quad (10) \quad (10) \quad (10) \quad [\{P_3C_2Mes_2\}_4Cu_6Br_1]^+, \quad (10) \quad (10)$  $[{P_3C_2Mes_2}_4Cu_5]^+,$ 1647.9  $[{P_3C_2Mes_2}_3Cu_6Br_2{CH_3CN}]^+,$ 1607.1  $[{P_3C_2Mes_2}_3Cu_6Br_2]^+,$ 1504.2  $[{P_3C_2Mes_2}_3Cu_5Br{CH_3CN}]^+,$  $[{P_3C_2Mes_2}_3Cu_5Br]^+,$ 1319.2 1463.0 1328.6  $[{P_3C_2Mes_2}_2Cu_6Br_3]^+,$  $[{P_3C_2Mes_2}_3Cu_4]^+,$ 1230.0  $[{P_3C_2Mes_2}_2Cu_5Br_2{CH_3CN}]^+,$ 1188.9  $[{P_3C_2Mes_2}_2Cu_5Br_2]^+,$ 1126.8  $[{P_3C_2Mes_2}_2Cu_4Br{CH_3CN}]^+.$ 

**Negative ion ESI-MS** (CH<sub>3</sub>CN): m/z (%) = 510.3 [Cu<sub>3</sub>Br<sub>4</sub>]<sup>-</sup>, 366.5 [Cu<sub>2</sub>Br<sub>3</sub>]<sup>-</sup>, 294.5 [FeBr<sub>3</sub>]<sup>-</sup>, 222.7 (100) [CuBr<sub>2</sub>]<sup>-</sup>

**Elemental analysis**: Calculated (%) for  $[(P_3C_2Mes_2)_2Cu_{9,3}Br_{7,3}(CH_3CN)_3]$  (2053.9 g/mol): C 28.07, H 2.75, N 2.73; found: C 27.64, H 2.96, N 3.28.

Analytical data of the mother liquor of **4**:

**Positive ion ESI-MS** (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN): m/z (%) = 326.1 (100) [Cp\*<sub>2</sub>Fe]<sup>+</sup>, 273.0 [Cp\*Fe{CH<sub>3</sub>CN}<sub>2</sub>]<sup>+</sup>, 232.1 [Cp\*Fe{CH<sub>3</sub>CN}]<sup>+</sup>

**Negative ion ESI-MS** (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN): m/z (%) = 798.2 [Cu<sub>5</sub>Br<sub>6</sub>]<sup>-</sup>, 741.0 [Fe<sub>3</sub>Br<sub>7</sub>O]<sup>-</sup>, 726.3 [Fe<sub>3</sub>Br<sub>7</sub>]<sup>-</sup>, 654.4 [Cu<sub>4</sub>Br<sub>5</sub>]<sup>-</sup>, 510.4 [Cu<sub>3</sub>Br<sub>4</sub>]<sup>-</sup>, 375.4 [FeBr<sub>4</sub>]<sup>-</sup>, 366.4 [Cu<sub>2</sub>Br<sub>3</sub>]<sup>-</sup>, 294.5 (100) [FeBr<sub>3</sub>]<sup>-</sup>, 222.5 [CuBr<sub>2</sub>]<sup>-</sup>

**EI-MS** (70 eV): 326.2 [Cp\*<sub>2</sub>Fe]

After 5 minutes of stirring:

<sup>1</sup>**H** NMR (CD<sub>2</sub>Cl<sub>2</sub>/CD<sub>3</sub>CN):  $\delta$  [ppm] = 1.61 (s, 15H, Cp\*), 2.21 (s, 6H, *p*-CH<sub>3</sub>), 2.74 (s, 12H, *o*-CH<sub>3</sub>), 6.91 (s, 4H, *aryl*-H).

After 4 hours of stirring:

<sup>1</sup>**H** NMR (CD<sub>2</sub>Cl<sub>2</sub>/CD<sub>3</sub>CN):  $\delta$  [ppm] = 1.60 (s, 15H, Cp\*), 1.69 (s, Cp\*<sub>2</sub>Fe), 2.21 (s, 6H, *p*-CH<sub>3</sub>), 2.75 (s, 12H, *o*-CH<sub>3</sub>), 6.92 (s, 4H, *aryl*-H).

#### 1.4 Synthesis of 5

In a thin Schlenk tube a solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (25 mg, 0.05 mmol) in  $CH_2Cl_2$  (8 mL) is layered with a solution of CuBr (22 mg, 0.15 mmol) in  $CH_3CN$  (20 mL). After complete diffusion the solution is concentrated to 15 mL and layered with Et<sub>2</sub>O. Already during the diffusion process the formation of red crystals of 5 · 2 CH<sub>3</sub>CN can be observed. After complete diffusion the slightly turbid mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) and dried in vacuo.

Analytical data of **5**:

Yield: 30 mg (0.006 mmol, crystalline, 96% referred to [Cp\*Fe(n<sup>5</sup>-P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>)])

<sup>1</sup>**H** NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 1.95 (s, CH<sub>3</sub>CN), 2.02 (s, 12H, *o*-CH<sub>3</sub>), 2.25 (s, 6H, *p*-CH<sub>3</sub>), 5.44 (s, CH<sub>2</sub>Cl<sub>2</sub>), 6.87 (s, 4H, *aryl*-H).

Negative ion ESI-MS (CH<sub>3</sub>CN): *m*/*z* (%) = 304.6 (100) [Cu<sub>2</sub>Br<sub>2</sub>O]<sup>-</sup>, 222.7 [CuBr<sub>2</sub>]<sup>-</sup>

**Elemental analysis**: Calculated (%) for  $[(P_3C_2Mes_2)_8Cu_{16}Br_8(CH_3CN)_7(CH_2Cl_2)_3]$  (5040.7 g/mol): C 42.18, H 4.06, N 1.95; found: C 41.99, H 4.03, N 2.02.

## 1.5 Synthesis of 6

A solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (110 mg, 0.2 mmol) in  $CH_2Cl_2$  (5 mL) is added to a solution of CuI (50 mg, 0.26 mmol) in  $CH_3CN$  (25 mL). After stirring the reaction mixture for 2 h, it is filtered (The residual solid still contains  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$ , since an excess was used) and layered with  $Et_2O$ . After complete diffusion at -28°C red plates of  $\mathbf{6} \cdot 0.5 C_7H_8 \cdot 2.5 CH_3CN$  can be obtained. The mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) and dried in vacuo. By concentrating the mother liquor and storing at -28 °C a second crop of crystals can be obtained.

Analytical data of **6**:

Yield: 40 mg (0.031 mmol, crystalline, 59% referred to CuI)

<sup>1</sup>**H** NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 1.95 (s, CH<sub>3</sub>CN), 2.04 (s, 3H, *p*-CH<sub>3</sub>), 2.13 (s, 3H, *p*-CH<sub>3</sub>), 2.22 (s, 6H, *o*-CH<sub>3</sub>), 2.27 (s, 6H, *o*-CH<sub>3</sub>), 6.90 (s, 4H, *aryl*-H).

<sup>13</sup>C{<sup>1</sup>H} **NMR** (CD<sub>3</sub>CN):  $\delta$  [ppm] = 21.14, 23.50, 26.23, 128.66, 136.86, 138.37.

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (CD<sub>3</sub>CN):  $\delta$  [ppm] = 134 (br), 153.0 (br), 205 (br), 224 (br).

**Positive ion ESI-MS** (CH<sub>3</sub>CN): m/z (%) = 2883.2 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>11</sub>I<sub>6</sub>]<sup>+</sup>, 2878.2 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>12</sub>I<sub>8</sub>]<sup>+</sup>, 2691.5  $[\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{1}OI_{5}]^{+}, 2650.4 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{1}I_{7}]^{+}, 2500.1 \quad [\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{9}I_{4}]^{+}, 2463.1 \quad [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{1}OI_{6}]^{+}, 2463.1 \quad [\{P_{3}C_{2}Mes_{2}\}_{6}Cu_{1}OI_{6}]^{+}, 2463.1 \quad [\{P_{3}C_{2}Mes_{2}BUS_{6}Cu_{1}OI_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{6}CU_{$ 2424.7  $[{P_3C_2Mes_2}_2Cu_{11}I_8]^+,$ 2312.7  $[{P_3C_2Mes_2}_3Cu_{12}I_8]^+,$ 2273.0  $[{P_3C_2Mes_2}_3Cu_9I_5]^+,$ 2234.7  $[\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{10}I_{7}]^{+}, 2119.7 \ [\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{7}I_{2}]^{+}, 2081.2 \ [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{8}I_{4}]^{+}, 2042.9 \ [\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{9}I_{6}]^{+}, 1929.1 \ [\{P_{3}C_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}]^{+}, 1929.1 \ [\{P_{3}C_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_$  $[\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{6}I]^{+},\ 1890.8\ [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{7}I_{3}]^{+},\ 1742.0\ [\{P_{3}C_{2}Mes_{2}\}_{4}Cu_{5}]^{+},\ 1700.9\ [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{6}I_{2}]^{+},\ 1661.8\ C_{2}Mes_{2}\}_{4}Cu_{5}I^{+},\ 1700.9\ C_{2}Mes_{2}I_{3}Cu_{6}I_{2}]^{+},\ 1661.8\ C_{2}Mes_{2}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}Cu_{6}I_{4}$  $[\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{7}I_{4}]^{+}, 1511.0 \ [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{5}I]^{+}, 1472.4 \ [\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{6}I_{3}]^{+}, 1321.6 \ [\{P_{3}C_{2}Mes_{2}\}_{3}Cu_{4}]^{+}, 1285.2 \ [\{P_{3}C_{2}Mes_{2}\}_{2}Cu_{7}I_{4}]^{+}, 1285.2 \ [\{P_{3}C_{2}Mes_{2}]^{+}, 1285.2 \ [\{P_{3}C_{2}Mes_{2}]^{+}, 1285.2 \ [\{P_{3}C_{2}Mes_{2}Mes_{2}]^{+}, 1285.2 \ [\{P_{3}C_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}]^{+}, 1285.2 \ [\{P_{3}C_{2}Mes_{2}Mes_{2}Mes_{2}Mes_{2}Me$  $[{P_3C_2Mes_2}Cu_6I_4]^+,$  $[{P_3C_2Mes_2}_2Cu_5I_2]^+,$ 1242.2 1172.8  $[{P_3C_2Mes_2}_2Cu_4I{CH_3CN}_2]^+,$ 1131.8  $[{P_3C_2Mes_2}_2Cu_4I{CH_3CN}]^+, 1090.8 [{P_3C_2Mes_2}_2Cu_4I]^+, 1052.4 [{P_3C_2Mes_2}_Cu_5I_3]^+$ 

**Negative ion ESI-MS** (CH<sub>3</sub>CN): m/z (%) = 1270.1 [Cu<sub>6</sub>I<sub>7</sub>]<sup>-</sup>, 1078.2 [Cu<sub>5</sub>I<sub>6</sub>]<sup>-</sup>, 888.3 [Cu<sub>4</sub>I<sub>5</sub>]<sup>-</sup>, 698.5 [Cu<sub>3</sub>I<sub>4</sub>]<sup>-</sup>, 506.6 [Cu<sub>2</sub>I<sub>3</sub>]<sup>-</sup>, 316.8 (100) [CuI<sub>2</sub>]<sup>-</sup>

**Elemental analysis**: Calculated (%) for [(P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>)Cu<sub>5</sub>I<sub>4</sub>(CH<sub>3</sub>CN)<sub>3</sub>] (1303.8 g/mol): C 23.96, H 2.40, N 3.22; found: C 23.96, H 2.50, N 3.28.

## 1.6 Synthesis of 7

In a schlenk tube a solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (28 mg, 0.05 mmol) in  $CH_2Cl_2$  (10 mL) is layered with a solution of CuI (35 mg, 0.18 mmol) in  $CH_3CN$  (10 mL). After complete diffusion the solution is filtered, concentrated to 3 mL and layered onto a toluene solution (10 mL) in a thin schlenk tube. During diffusion the

formation of yellow crystals of  $7 \cdot 2 C_7 H_8$  can be observed. The mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) and dried in vacuo.

Analytical data of 7:

Yield: 18 mg (0.01 mmol, crystalline, 41% referred to CuI)

<sup>1</sup>**H NMR** (CD<sub>3</sub>CN): *δ* [ppm] = 1.95 (s, CH<sub>3</sub>CN), 2.26 (s, br, 18H, CH<sub>3</sub>), 6.92 (s, 4H, *aryl*-H).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (CD<sub>3</sub>CN):  $\delta$  [ppm] = 137.2 (br), 222.6 (br).

Negative ion ESI-MS (dme/CH<sub>3</sub>CN): m/z (%) = 2108.7 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>8</sub>I<sub>7</sub>]<sup>-</sup>, 1957.0 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>7</sub>I<sub>6</sub>{CH<sub>3</sub>CN}]<sup>-</sup>, 1916.7 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>7</sub>I<sub>6</sub>]<sup>-</sup>, 1726.9 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>6</sub>I<sub>5</sub>]<sup>-</sup>, 1536.8 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>5</sub>I<sub>4</sub>]<sup>-</sup>, 1498.6 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}Cu<sub>6</sub>I<sub>6</sub>]<sup>-</sup>, 1344.9 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>4</sub>I<sub>3</sub>]<sup>-</sup>, 1306.6 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}Cu<sub>5</sub>I<sub>5</sub>]<sup>-</sup>, 1116.7 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}Cu<sub>4</sub>I<sub>4</sub>]<sup>-</sup>, 1268.2 [Cu<sub>6</sub>I<sub>7</sub>]<sup>-</sup>, 1078.2 [Cu<sub>5</sub>I<sub>6</sub>]<sup>-</sup>, 888.3 [Cu<sub>4</sub>I<sub>5</sub>]<sup>-</sup>, 698.5 [Cu<sub>3</sub>I<sub>4</sub>]<sup>-</sup>, 506.6 [Cu<sub>2</sub>I<sub>3</sub>]<sup>-</sup>, 316.8 (100) [CuI<sub>2</sub>]<sup>-</sup>

**Elemental analysis**: Calculated (%) for  $[(P_3C_2Mes_2)Cu_7I_6(CH_3CN)_2*1.5 C_7H_8]$  (1782 g/mol): C 23.26, H 2.26, N 1.57; found: C 23.58, H 2.45, N 1.58.

#### 1.7 Synthesis of 8 and 9

In a thin schlenk tube a solution of  $[Cp*Fe(\eta^5-P_3C_2Mes_2)]$  (25 mg, 0.046 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8 mL) is layered with a solution of CuI (44 mg, 0.23 mmol) in CH<sub>3</sub>CN (20 mL). After complete diffusion the solution is filtered, concentrated to 15 mL and layered with Et<sub>2</sub>O (15 mL). During diffusion the formation of orange-red plates of **8**  $\cdot$  0.5 CH<sub>2</sub>Cl<sub>2</sub>  $\cdot$  3 CH<sub>3</sub>CN and uniquely red rods of **9**  $\cdot$  0.6 CH<sub>2</sub>Cl<sub>2</sub> can be observed. The mother liquor is decanted, the crystals are washed with hexane (3 x 5 mL) and dried in vacuo.

Analytical data of **8** and **9**:

**Yield**: 28 mg (In the event, only **8** is present: 0.013 mmol, crystalline, 45% referred to CuI; in the event, only **9** is present: 0.011 mmol, crystalline, 35% referred to CuI; a calculation of the ratio of **8** and **9** cannot be made, since one compound is molecular (**8**), the other one polymeric (**9**).

<sup>1</sup>**H NMR** (CD<sub>3</sub>CN): *δ* [ppm] = 1.95 (s, CH<sub>3</sub>CN), 2.04 (s, 3H, *p*-CH<sub>3</sub>), 2.13 (s, 12H, *o*-CH<sub>3</sub>), 2.20 (s, 6H, *o*-CH<sub>3</sub>), 2.26 (s, 6H, *p*-CH<sub>3</sub>), 6.90 (s, br, 6H, *aryl*-H).

<sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  [ppm] = 135 (br), 206 (br), 223 (br).

Negative ion ESI-MS (CH<sub>3</sub>CN): m/z (%) = 2944.9 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>10</sub>I<sub>7</sub>]<sup>-</sup>, 2908.5 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>11</sub>I<sub>9</sub>]<sup>-</sup>, 2867.8 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>12</sub>I<sub>11</sub>]<sup>-</sup>, 2759.2 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>9</sub>I<sub>6</sub>]<sup>-</sup>, 2720.5 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>10</sub>I<sub>8</sub>]<sup>-</sup>, 2678.4 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>11</sub>I<sub>10</sub>]<sup>-</sup>, 2563.1 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>8</sub>I<sub>5</sub>]<sup>-</sup>, 2524.7 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>9</sub>I<sub>7</sub>]<sup>-</sup>, 2488.3 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>10</sub>I<sub>9</sub>]<sup>-</sup>, 2374.3 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>4</sub>Cu<sub>7</sub>I<sub>4</sub>]<sup>-</sup>, 2335.1 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>8</sub>I<sub>6</sub>]<sup>-</sup>, 2298.4 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>9</sub>I<sub>8</sub>]<sup>-</sup>, 2260.1 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>10</sub>I<sub>10</sub>]<sup>-</sup>, 2145.0 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>7</sub>I<sub>5</sub>]<sup>-</sup>, 2108.6 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>8</sub>I<sub>7</sub>]<sup>-</sup>, 2068.1 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>9</sub>I<sub>9</sub>]<sup>-</sup>, 1954.9 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>6</sub>I<sub>4</sub>]<sup>-</sup>, 1916.8 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>7</sub>I<sub>6</sub>]<sup>-</sup>, 1878.3 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>8</sub>I<sub>8</sub>]<sup>-</sup>, 1767.1 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>3</sub>Cu<sub>5</sub>I<sub>3</sub>]<sup>-</sup>, 1726.7 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>6</sub>I<sub>5</sub>]<sup>-</sup>, 1688.3 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>7</sub>I<sub>7</sub>]<sup>-</sup>, 1650.0 [Cu<sub>8</sub>I<sub>9</sub>]<sup>-</sup>, 1534.8 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>5</sub>I<sub>4</sub>]<sup>-</sup>, 1498.5 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>6</sub>I<sub>6</sub>]<sup>-</sup>, 1460.1 [Cu<sub>7</sub>I<sub>8</sub>]<sup>-</sup>, 1346.9 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>4</sub>I<sub>3</sub>]<sup>-</sup>, 1306.6 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>5</sub>I<sub>5</sub>]<sup>-</sup>, 1270.2 [Cu<sub>6</sub>I<sub>7</sub>]<sup>-</sup>, 1116.7 [{P<sub>3</sub>C<sub>2</sub>Mes<sub>2</sub>}<sub>2</sub>Cu<sub>4</sub>I<sub>4</sub>]<sup>-</sup>, 1078.3 [Cu<sub>5</sub>I<sub>6</sub>]<sup>-</sup>, 888.4 [Cu<sub>4</sub>I<sub>5</sub>]<sup>-</sup>, 698.5 [Cu<sub>3</sub>I<sub>4</sub>]<sup>-</sup>, 506.6 [Cu<sub>2</sub>I<sub>3</sub>]<sup>-</sup>, 316.6 (100) [CuI<sub>2</sub>]<sup>-</sup>

**Elemental analysis**: Found: C 24.82, H 2.69, N 2.25. Neither an exact assignment nor a calculation of the ratio of **8** and **9** can be made, since one compound is molecular (**8**), the other one polymeric (**9**).

Analytical data of 8:

**Elemental analysis**: Calculated (%) for  $[(P_3C_2Mes_2)_2Cu_8I_6(CH_3CN)_4]$  (2145 g/mol): C 26.88, H 2.63, N 2.61; found: C 26.59, H 2.69, N 2.70.

Analytical data of the mother liquor of **8** and **9**:

**Positive ion ESI-MS** (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN): m/z (%) = 526.7 (100) [Cu<sub>3</sub>I<sub>2</sub>{CH<sub>3</sub>CN}<sub>2</sub>]<sup>+</sup>, 432.1 [Cp\*FeCu{CH<sub>3</sub>CN}]<sup>+</sup>, 389.2 [Cp\*FeCu]<sup>+</sup>, 334.7 [Cu<sub>2</sub>I{CH<sub>3</sub>CN}<sub>2</sub>]<sup>+</sup>, 326.1 (90) [Cp\*<sub>2</sub>Fe]<sup>+</sup>

Negative ion ESI-MS (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN): m/z (%) = 2411.5 [Cu<sub>1</sub>2I<sub>13</sub>]<sup>-</sup>, 2219.4 [Cu<sub>1</sub>I<sub>12</sub>]<sup>-</sup>, 2031.6 [Cu<sub>1</sub>0I<sub>11</sub>]<sup>-</sup>, 1841.6 [Cu<sub>9</sub>I<sub>10</sub>]<sup>-</sup>, 1649.8 [Cu<sub>8</sub>I<sub>9</sub>]<sup>-</sup>, 1459.9 [Cu<sub>7</sub>I<sub>8</sub>]<sup>-</sup>, 1270.1 [Cu<sub>6</sub>I<sub>7</sub>]<sup>-</sup>, 1078.2 [Cu<sub>5</sub>I<sub>6</sub>]<sup>-</sup>, 888.3 [Cu<sub>4</sub>I<sub>5</sub>]<sup>-</sup>, 698.5 [Cu<sub>3</sub>I<sub>4</sub>]<sup>-</sup>, 506.6 [Cu<sub>2</sub>I<sub>3</sub>]<sup>-</sup>, 380.6 [I<sub>3</sub>]<sup>-</sup>, 316.7 (100) [CuI<sub>2</sub>]<sup>-</sup>

#### 2. Solution NMR spectroscopic details



Fig. S 1: VT  ${}^{31}P{}^{1}H$  NMR of freshly dissolved crystals of 3.

#### 3. X-ray structure analysis

The list of structurally investigated compounds:

 $[\{Cu_7Cl_4(P_3C_2Mes_2)_2(MeCN)_7\}_2 \{Cu_2Cl_2(MeCN)_2\} \{Cu_2Cl_3\}_2] + 6 CH_3CN (\mathbf{2} + 6 CH_3CN) \\ [\{Cu_7Br_4(P_3C_2Mes_2)_2(MeCN)_7\}_2 \{Cu_2Br_2(MeCN)_2\} \{Cu_2Br_3\}_2] + 6 CH_3CN (\mathbf{3} + 6 CH_3CN) \\ [Cu_6Br_4(P_3C_2Mes_2)_2(MeCN)_{8.5}(CuBr)_{3.3(3)}] + CH_3CN (\mathbf{4} + CH_3CN) \\ [\{Cu_5Br(MeCN)_5(P_3C_2Mes_2)_4Cu(MeCN)_2CuBr_2\}_2Cu(MeCN)_2][CuBr_2] + 2 CH_3CN (\mathbf{5} + 2 CH_3CN) \\ [Cu_4(MeCN)_4I_4) \{P_3C_2Mes_2\} (Cu(MeCN)_3)] + 0.5 C_7H_8 + 2.5 CH_3CN (\mathbf{6} + 0.5 C_7H_8 + 2.5 CH_3CN) \\ [Cu_4(MeCN)_4I_6) \{P_3C_2(Mes)_2\} (Cu(MeCN)_3)] + 2 C_7H_8 (\mathbf{7} + 2 C_7H_8) \\ [(P_3C_2Mes_2)_2 \{Cu(MeCN)_3\}_2 \{CuI\}_6] + 0.5 CH_2Cl_2 + 3 CH_3CN (\mathbf{8} + 0.5 CH_2Cl_2 + 3 CH_3CN) \\ [Cp*Fe(MeCN)_3][(P_3C_2Mes_2)_2 \{Cu(MeCN)_2\} \{CuI\}_6] + 0.6 CH_2Cl_2 (\mathbf{9} + 0.6 CH_2Cl_2) \\ \end{bmatrix}$ 

Crystals of **2-9** were taken from a Schlenk tube under a stream of argon and covered with mineral oil. The single crystal was taken to the pre-centered goniometer head with CryoMount<sup>®</sup> and directly attached to the diffractometer into a stream of cold nitrogen. The data for  $2 \cdot 6 \text{ CH}_3\text{CN}$ ,  $6 \cdot 0.5 \text{ C}_7\text{H}_8 \cdot 2.5 \text{ CH}_3\text{CN}$ ,  $7 \cdot 10^{-5}$ 

2 C<sub>7</sub>H<sub>8</sub> and **8** · 0.5 CH<sub>2</sub>Cl<sub>2</sub> · 3 CH<sub>3</sub>CN were collected on an Agilent Technologies Gemini R-Ultra diffractometer equipped with Ruby CCD detector and an Enhanced Ultra CuK<sub> $\alpha$ </sub> sealed tube ( $\lambda = 1.54178$  Å) using 1°  $\omega$  scans. The data for **3** · 6 CH<sub>3</sub>CN, **4** · CH<sub>3</sub>CN, **5** · 2 CH<sub>3</sub>CN were collected on an Agilent Technologies diffractometer equipped with Titan<sup>S2</sup> CCD detector and a SuperNova CuK<sub> $\alpha$ </sub> microfocus source using 1°  $\omega$  scans. The data for **9** · 0.6 CH<sub>2</sub>Cl<sub>2</sub> were collected on an Agilent Technologies diffractometer equipped with Atlas CCD detector and a SuperNova CuK<sub> $\alpha$ </sub> microfocus source using 1°  $\omega$  scans. All measurements were performed at 123 K. Crystallographic data and details of the diffraction experiments are given in Table S 1 - Table S 3. The structures of **2-9** were solved by direct methods with *SIR97*,<sup>1</sup> *SHELX97* or *SHELX2013*.<sup>2</sup> The structures were refined by full-matrix least-squares method against  $|F|^2$  in anisotropic approximation using *SHELXL97* or the multiprocessor and variable memory version *SHELX2013*. All non-hydrogen atoms were refined anisotropically, whereas the hydrogen atoms were refined riding on pivot atoms.

The crystal structure of  $4 \cdot CH_3CN$  is severely disorderd (Fig.2S). The displacement parameters of the heavy atoms were set equal to  $U_{iso} = 0.05 A^{-2}$ , subsequently the occupancy factors were refined. Their resulting values were fixed and the refinement of the displacement parameters was performed. The model was checked to be non-contradictory. For this reason the occupancy factors of each disordered part of the structure were analysed to give no contradictions with occupancy factors of conflicting disordered components. The occupancy factors of all atoms in the environment of copper atoms were checked to be in agreement with the occupancy factors and coordination polyhedra of the copper atoms. The missing CH<sub>3</sub>CN molecules were found from the difference electron density map. Several solvent CH<sub>3</sub>CN molecules are also disordered.

The crystal of  $5 \cdot 2$  CH<sub>3</sub>CN appeared to be a racemic twin (ratio 0.64(2) /0.34(2)) in the space group *Pc*. The structure possesses disorder of the heavy part. To refine the occupancies of these heavy atoms, their isotropic displacement parameters were fixed at 0.05 A<sup>-2</sup>. The refined values were fixed and the displacement parameters were also refined. The linear counter anion [CuBr<sub>2</sub>]<sup>-</sup> is disordered over at least two positions with high displacement parameters. On one hand, no residual density was found to correspond to any position of another anion (for example, disordered Br<sup>-</sup>) that would allow to reduce the occupancy factors for the [CuBr<sub>2</sub>]<sup>-</sup> anion. On the other hand, further split of the Cu and Br positions did not give a satisfactory geometry of the anion. Therefore the disorder of the anion over two positions of the same relative weight was accepted as the only possibility to reach charge balance.

In  $\mathbf{6} \cdot 0.5 \text{ C}_7\text{H}_8 \cdot 2.5 \text{ CH}_3\text{CN}$  one of the mesityl ligands and one of the coordinated MeCN group are disordered over two positions with a ratio of 0.5/0.5 and 0.45/0.55, respectively. Solvated MeCN and toluene molecules in  $\mathbf{6} \cdot 0.5 \text{ C}_7\text{H}_8 \cdot 2.5 \text{ CH}_3\text{CN}$  are disordered each over two close positions with the same ratio of 0.5/0.5. In  $\mathbf{8} \cdot 0.5 \text{ CH}_2\text{Cl}_2 \cdot 3 \text{ CH}_3\text{CN}$  and  $\mathbf{9} \cdot 0.6 \text{ CH}_2\text{Cl}_2$  solvated CH<sub>2</sub>Cl<sub>2</sub> molecules partly (0.5 and 0.6) occupy their positions.

CIF files with comprehensive information on the details of the diffraction experiments and full tables of

bond lengths and angles for **2-9** are deposited in Cambridge Crystallographic Data Centre under the deposition codes CCDC 1043724 - CCDC 1043731, respectively.

|                                                                                   | $2 \cdot 6 \text{ CH}_3 \text{CN}$                                            | $3 \cdot 6 \text{ CH}_3 \text{CN}$                                            | $4 \cdot CH_3CN$                                                               |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| CCDC Codes                                                                        | CCDC 1043724                                                                  | CCDC 1043726                                                                  | CCDC 1043725                                                                   |
| Chemical formula                                                                  | $C_{112}H_{136}Cl_{16}Cu_{20}N_{16}P_{12}{\cdot}6(C_2H_3N)$                   | $C_{112}H_{136}Br_{16}Cu_{20}N_{16}P_{12} \cdot 6(C_2H_3N)$                   | C59H72.50Br7.33Cu9.33N9.50P6                                                   |
| Mr                                                                                | 2081.17                                                                       | 4873.69                                                                       | 2279.51                                                                        |
| Crystal system, space group                                                       | Triclinic, <i>P</i> †                                                         | Triclinic, P1                                                                 | Monoclinic, C2/c                                                               |
| Temperature (K)                                                                   | 173                                                                           | 123                                                                           | 123                                                                            |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                                | 14.7230(11), 16.4433(8),<br>17.7704(9)                                        | 14.7655 (4),16.7179(5), 17.9266(5)                                            | 30.3248 (7), 16.9395 (4), 16.0657<br>(3)                                       |
| α, β, γ (°)                                                                       | 89.990(4), 83.485(5), 71.708(5)                                               | 90.321(2), 96.606(2), 108.593(2)                                              | 102.218 (2)                                                                    |
| $V(Å^3)$                                                                          | 4055.5(4)                                                                     | 4162.1(2)                                                                     | 8065.8 (3)                                                                     |
| Ζ                                                                                 | 1                                                                             | 1                                                                             | 4                                                                              |
| F(000)                                                                            | 2084                                                                          | 2372                                                                          | 4441                                                                           |
| Radiation type                                                                    | Cu Kα                                                                         | Cu Ka                                                                         | Cu Ka                                                                          |
| μ (mm <sup>-1</sup> )                                                             | 6.68                                                                          | 8.65                                                                          | 8.32                                                                           |
| Crystal colour and shape                                                          | Orange-to-red plate                                                           | Orange block                                                                  | Orange plate                                                                   |
| Crystal size (mm)                                                                 | $0.15 \times 0.10 \times 0.04$                                                | $0.13 \times 0.07 \times 0.04$                                                | $0.14 \times 0.12 \times 0.06$                                                 |
| Data collection                                                                   |                                                                               |                                                                               |                                                                                |
| Diffractometer                                                                    | Oxford Diffraction Gemini Ultra<br>diffractometer                             | SuperNova, TitanS2<br>diffractometer                                          | Supernova, TitanS2<br>diffractometer                                           |
| Absorption correction                                                             | Multi-scan                                                                    | Gaussian                                                                      | Gaussian                                                                       |
| $T_{\min}, T_{\max}$                                                              | 0.569, 1.000                                                                  | 0.627, 0.826                                                                  | 0.361, 0.658                                                                   |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 24323, 12422, 9915                                                            | 25708, 15945, 11431                                                           | 23524, 8030, 6220                                                              |
| R <sub>int</sub>                                                                  | 0.030                                                                         | 0.051                                                                         | 0.063                                                                          |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.574                                                                         | 0.625                                                                         | 0.624                                                                          |
| Range of <i>h</i> , <i>k</i> , <i>l</i>                                           | $h = -16 \rightarrow 16, k = -18 \rightarrow 14,$<br>$l = -20 \rightarrow 20$ | $h = -18 \rightarrow 17, k = -20 \rightarrow 15,$<br>$l = -20 \rightarrow 22$ | $h = -37 \rightarrow 35, k = -21 \rightarrow 19, l = -$<br>18 $\rightarrow$ 19 |
| Refinement                                                                        |                                                                               |                                                                               |                                                                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                               | 0.044, 0.127, 1.05                                                            | 0.048, 0.125, 0.92                                                            | 0.062, 0.175, 0.97                                                             |
| No. of reflections                                                                | 12422                                                                         | 15945                                                                         | 8030                                                                           |
| No. of parameters                                                                 | 897                                                                           | 897                                                                           | 517                                                                            |
| H-atom treatment                                                                  | H-atom parameters constrained                                                 | H-atom parameters constrained                                                 | H-atom parameters constrained                                                  |
| $\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$       | 1.20, -0.65                                                                   | 2.47, -1.56                                                                   | 2.15, -0.78                                                                    |

Table S 1. Experimental details for compounds 2-4

Computer programs: *CrysAlis PRO*, Agilent Technologies, *SIR97* (Altomare, 1999), *SHELXL97* (Sheldrick, 1997), *PLATON* (Spek, 1990), *PLATON* (Spek, 2003).

|                                                                                   | <b>5</b> · 2 CH <sub>3</sub> CN                                               | $6 \cdot 0.5 \text{ C}_7\text{H}_8 \cdot 2.5 \text{ CH}_3\text{CN}$           | $7 \cdot 2 C_7 H_8$                                                           |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| CCDC Codes                                                                        | CCDC 1043727                                                                  | CCDC 1043728                                                                  | CCDC 1043729                                                                  |
| Chemical formula                                                                  | $C_{196}H_{230}Br_8Cu_{16}N_{18}P_{24}$                                       | $C_{34}H_{43}Cu_5I_4N_7P_3{\cdot}0.5(C_7H_8){\cdot}2.5(C_2H_3N)$              | $C_{49}H_{57}Cu_7I_6N_4P_3$                                                   |
| Mr                                                                                | 5237.17                                                                       | 1616.67                                                                       | 2001.07                                                                       |
| Crystal system, space group                                                       | Monoclinic, Pc                                                                | Triclinic, P1                                                                 | Monoclinic, C2/c                                                              |
| Temperature (K)                                                                   | 123                                                                           | 123                                                                           | 123                                                                           |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                                | 26.6111 (4), 20.1860 (2),<br>23.5404 (3)                                      | 13.4384(3), 14.3484(2), 15.5780(4)                                            | 31.3947(18), 12.7194(5),<br>16.5419(8)                                        |
| α, β, γ (°)                                                                       | 102.911 (2)                                                                   | 83.695(2), 77.946(2), 80.480(2)                                               | 109.401(6)                                                                    |
| $V(Å^3)$                                                                          | 12325.5 (3)                                                                   | 2888.22 (11)                                                                  | 6230.5(6)                                                                     |
| Ζ                                                                                 | 2                                                                             | 2                                                                             | 4                                                                             |
| F(000)                                                                            | 5272                                                                          | 1556                                                                          | 3780                                                                          |
| Radiation type                                                                    | Cu Kα                                                                         | Cu Ka                                                                         | Cu Kα                                                                         |
| μ (mm <sup>-1</sup> )                                                             | 4.80                                                                          | 19.88                                                                         | 26.92                                                                         |
| Crystal shape                                                                     | Orange prism                                                                  | Red elongated plate                                                           | Yellow needle                                                                 |
| Crystal size (mm)                                                                 | $0.25 \times 0.13 \times 0.04$                                                | $0.20\times0.11\times0.04$                                                    | $0.24 \times 0.04 \times 0.04$                                                |
| Data collection                                                                   |                                                                               |                                                                               |                                                                               |
| Diffractometer                                                                    | Supernova, TitanS2<br>diffractometer                                          | Xcalibur, Ruby, Gemini ultra<br>diffractometer                                | Xcalibur, Ruby, Gemini ultra<br>diffractometer                                |
| Absorption correction                                                             | Gaussian                                                                      | Gaussian                                                                      | Analytical                                                                    |
| $T_{\min}, T_{\max}$                                                              | 0.415, 0.833                                                                  | 0.080, 0.521                                                                  | 0.178, 0.550                                                                  |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 80558, 38117, 33313                                                           | 31867, 10141, 9195                                                            | 15147, 5489, 4289                                                             |
| R <sub>int</sub>                                                                  | 0.032                                                                         | 0.027                                                                         | 0.043                                                                         |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.621                                                                         | 0.596                                                                         | 0.597                                                                         |
| Range of <i>h</i> , <i>k</i> , <i>l</i>                                           | $h = -25 \rightarrow 32, k = -24 \rightarrow 24,$<br>$l = -26 \rightarrow 29$ | $h = -15 \rightarrow 15, k = -16 \rightarrow 12,$<br>$l = -18 \rightarrow 18$ | $h = -37 \rightarrow 33, k = -13 \rightarrow 15,$<br>$l = -12 \rightarrow 19$ |
| Refinement                                                                        |                                                                               |                                                                               |                                                                               |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                               | 0.059, 0.158, 1.02                                                            | 0.026, 0.069, 1.05                                                            | 0.044, 0.114, 1.01                                                            |
| No. of reflections                                                                | 38117                                                                         | 10141                                                                         | 5489                                                                          |
| No. of parameters                                                                 | 2350                                                                          | 688                                                                           | 324                                                                           |
| H-atom treatment                                                                  | H-atom parameters constrained                                                 | H-atom parameters constrained                                                 | H-atom parameters constrained                                                 |
| $\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$       | 1.23, -0.67                                                                   | 0.98, -2.12                                                                   | 2.84, -1.34                                                                   |
| Computer programs: Cr                                                             | ysAlis PRO, Agilent Te                                                        | echnologies, Version 1.171.37.31d                                             | (release 11-02-2014                                                           |

## Table S 2. Experimental details for compounds 5-7

CrysAlis171 .NET) (compiled Feb 11 2014,18:09:27), SHEXLS-97, SHELXL2014 (Sheldrick, 2014).

## Table S 3. Experimental details for compounds 8-9

|                                                                                   | $8 \cdot 0.5 \text{ CH}_2\text{Cl}_2 \cdot 3 \text{ CH}_3\text{CN}$      | $9\cdot 0.6~\mathrm{CH_2Cl_2}$                                           |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| CCDC Codes                                                                        | CCDC 1043730                                                             | CCDC 1043731                                                             |
| Chemical formula                                                                  | $C_{58.50}H_{72}ClCu_8I_6N_9P_6$                                         | $C_{60.6}H_{75.2}Cl_{1.2}Cu_7FeI_6N_5P_6$                                |
| M <sub>r</sub>                                                                    | 2392.24                                                                  | 2364.12                                                                  |
| Crystal system, space group                                                       | Monoclinic, C2/c                                                         | Monoclinic, $P2_1/n$                                                     |
| Temperature (K)                                                                   | 123                                                                      | 123                                                                      |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                                | 48.744(3), 12.3812(5), 30.1538(19)                                       | 12.5667(6), 29.4452(14), 21.7343(11)                                     |
| β (°)                                                                             | 117.951 (9)                                                              | 90.144 (5)                                                               |
| $V(Å^3)$                                                                          | 16075 (2)                                                                | 8042.3 (7)                                                               |
| Ζ                                                                                 | 8                                                                        | 4                                                                        |
| F(000)                                                                            | 9144                                                                     | 4525                                                                     |
| Radiation type                                                                    | Cu Ka                                                                    | Cu <i>K</i> α                                                            |
| μ (mm <sup>-1</sup> )                                                             | 22.11                                                                    | 23.26                                                                    |
| Crystal shape                                                                     | Plate                                                                    | Rod                                                                      |
| Colour                                                                            | Red                                                                      | Red                                                                      |
| Crystal size (mm)                                                                 | $0.27 \times 0.18 \times 0.03$                                           | $0.29 \times 0.13 \times 0.03$                                           |
| Data collection                                                                   |                                                                          |                                                                          |
| Diffractometer                                                                    | Xcalibur, Ruby, Gemini ultra<br>diffractometer                           | SuperNova, Single source at offset, Atlas diffractometer                 |
| Absorption correction                                                             | Analytical                                                               | Analytical                                                               |
| $T_{\min}, T_{\max}$                                                              | 0.055, 0.556                                                             | 0.069, 0.540                                                             |
| No. of measured, independent<br>and<br>observed $[I > 2\sigma(I)]$<br>reflections | 60525, 14144, 6817                                                       | 27532, 15888, 12704                                                      |
| R <sub>int</sub>                                                                  | 0.170                                                                    | 0.049                                                                    |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                 | 0.596                                                                    | 0.628                                                                    |
| Range of <i>h</i> , <i>k</i> , <i>l</i>                                           | $h = -56 \rightarrow 57, k = -14 \rightarrow 14, l = -35 \rightarrow 19$ | $h = -10 \rightarrow 15, k = -35 \rightarrow 35, l = -26 \rightarrow 27$ |
| Refinement                                                                        |                                                                          |                                                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                               | 0.067, 0.171, 0.79                                                       | 0.047, 0.163, 1.05                                                       |
| No. of reflections                                                                | 14144                                                                    | 15888                                                                    |
| No. of parameters                                                                 | 815                                                                      | 815                                                                      |
| No. of restraints                                                                 | 1                                                                        | 0                                                                        |
| H-atom treatment                                                                  | H-atom parameters constrained                                            | H-atom parameters constrained                                            |
| $\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min}$ (e Å <sup>-3</sup> )         | 3.19, -1.48                                                              | 2.05, -1.89                                                              |

Computer programs: *CrysAlis PRO*, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46), *SIR97* (Altomare, 1999), *SHELXL97* (Sheldrick, 1997), SXGRAPH (Farrugia, 1999), *PLATON* (Spek, 2003).



Fig. S 2. Independent part and numbering scheme in  $2 \cdot 6$  CH<sub>3</sub>CN. The hydrogen atoms are not shown.

| Bond                 | Distance, Å | Bond       | Distance, Å | Bond       | Distance, Å | Bond       | Distance, Å |
|----------------------|-------------|------------|-------------|------------|-------------|------------|-------------|
| Cu1—Cl5              | 2.3859 (13) | Cu8—Cl2    | 2.3942 (13) | Cu4—P3     | 2.5008 (14) | P4—C31     | 1.737 (4)   |
| Cu1—P1               | 2.1733 (14) | Cu8—P5     | 2.2714 (15) | Cu4—N4     | 2.001 (5)   | P5—P6      | 2.0984 (15) |
| Cu1—N1               | 2.004 (5)   | Cu8—N8     | 1.963 (5)   | Cu5—Cl1    | 2.4126 (14) | P5—C21     | 1.731 (5)   |
| Cu1—Cl5 <sup>i</sup> | 2.3682 (13) | Cu9—Cl6    | 2.2955 (15) | Cu5—Cl3    | 2.4376 (13) | P6—C31     | 1.727 (5)   |
| Cu2—Cl4              | 2.3424 (13) | Cu9—Cl7    | 2.2496 (15) | Cu5—P3     | 2.2364 (13) | N1-C41     | 1.115 (8)   |
| Cu2—P2               | 2.4059 (13) | Cu9—P4     | 2.1531 (15) | Cu5—N5     | 1.971 (4)   | N2—C43     | 1.127 (7)   |
| Cu2—P6               | 2.2915 (13) | Cu10—Cl6   | 2.2409 (17) | Cu6—Cl3    | 2.6260 (12) | N3—C45     | 1.134 (6)   |
| Cu2—N2               | 1.987 (4)   | Cu10—Cl7   | 2.4710 (17) | Cu6—Cl4    | 2.3172 (13) | N4—C47     | 1.138 (7)   |
| Cu3—Cl2              | 2.3757 (13) | Cu10—Cl8   | 2.1363 (17) | Cu6—P3     | 2.3027 (13) | N5—C49     | 1.134 (7)   |
| Cu3—P2               | 2.3158 (13) | P1—C1      | 1.725 (5)   | Cu6—N6     | 1.958 (5)   | N6—C51     | 1.125 (8)   |
| Cu3—P6               | 2.3767 (13) | P1-C11     | 1.725 (4)   | Cu7—Cl1    | 2.8403 (14) | N7—C53     | 1.130 (7)   |
| Cu3—N3               | 1.979 (4)   | P2—P3      | 2.1067 (15) | Cu7—Cl3    | 2.3033 (14) | N8—C55     | 1.122 (8)   |
| Cu4—Cl1              | 2.4461 (13) | P2—C1      | 1.741 (4)   | Cu7—P5     | 2.2213 (14) | N9—C57     | 1.140 (11)  |
| Cu4—Cl2              | 2.5349 (14) | P3—C11     | 1.746 (5)   | Cu7—N7     | 1.963 (4)   | N10—C59    | 1.142 (9)   |
| Cu4—P2               | 2.4187 (13) | P4—C21     | 1.735 (4)   | Cu8—Cl1    | 2.4472 (14) | N11—C61    | 1.112 (8)   |
| Angle                | Value, °    | Angle      | Value, °    | Angle      | Value, °    | Angle      | Value, °    |
| Cl5—Cu1—P1           | 115.48 (5)  | Cl1—Cu8—N8 | 103.44 (14) | Cl2—Cu4—N4 | 103.37 (14) | Cu4—P3—Cu6 | 126.57 (5)  |
| Cl5—Cu1—N1           | 103.04 (15) | Cl2—Cu8—P5 | 108.51 (5)  | P2—Cu4—P3  | 50.68 (4)   | Cu4—P3—P2  | 62.65 (4)   |

Table S 4. Selected geometric parameters (Å, °) for 2  $\cdot$  6 CH<sub>3</sub>CN

| Cl5—Cu1—Cl5 <sup>i</sup> | 104.88 (5)  | Cl2—Cu8—N8   | 107.36 (12) | P2—Cu4—N4   | 110.54 (12) | Cu4—P3—C11 | 111.71 (16) |
|--------------------------|-------------|--------------|-------------|-------------|-------------|------------|-------------|
| P1—Cu1—N1                | 111.48 (14) | P5—Cu8—N8    | 123.30 (14) | P3—Cu4—N4   | 105.61 (14) | Cu5—P3—Cu6 | 68.81 (4)   |
| Cl5 <sup>i</sup> —Cu1—P1 | 115.25 (5)  | Cl6—Cu9—Cl7  | 99.83 (6)   | Cl1—Cu5—Cl3 | 101.05 (5)  | Cu5—P3—P2  | 127.13 (6)  |
| Cl5 <sup>i</sup> —Cu1—N1 | 105.50 (14) | Cl6—Cu9—P4   | 122.28 (6)  | Cl1—Cu5—P3  | 109.88 (5)  | Cu5—P3—C11 | 125.50 (14) |
| Cl4—Cu2—P2               | 108.70 (5)  | Cl7—Cu9—P4   | 137.45 (6)  | Cl1—Cu5—N5  | 105.60 (14) | Cu6—P3—P2  | 111.24 (6)  |
| Cl4—Cu2—P6               | 115.22 (5)  | Cl6—Cu10—Cl7 | 95.00 (6)   | Cl3—Cu5—P3  | 115.49 (5)  | Cu6—P3—C11 | 121.25 (16) |
| Cl4—Cu2—N2               | 104.35 (14) | Cl6—Cu10—Cl8 | 140.49 (7)  | Cl3—Cu5—N5  | 106.79 (13) | P2—P3—C11  | 100.37 (14) |
| P2—Cu2—P6                | 106.52 (5)  | Cl7—Cu10—Cl8 | 124.33 (7)  | P3—Cu5—N5   | 116.52 (12) | Cu9—P4—C21 | 129.97 (16) |
| P2—Cu2—N2                | 106.79 (14) | Cu1—P1—C1    | 124.25 (14) | Cl3—Cu6—Cl4 | 110.07 (5)  | Cu9—P4—C31 | 124.28 (15) |
| P6—Cu2—N2                | 114.89 (14) | Cu1—P1—C11   | 131.57 (17) | Cl3—Cu6—P3  | 106.50 (5)  | C21—P4—C31 | 103.6 (2)   |
| Cl2—Cu3—P2               | 105.08 (5)  | C1—P1—C11    | 104.2 (2)   | Cl3—Cu6—N6  | 96.35 (12)  | Cu7—P5—Cu8 | 71.23 (5)   |
| Cl2—Cu3—P6               | 108.66 (5)  | Cu2—P2—Cu3   | 65.22 (4)   | Cl4—Cu6—P3  | 108.52 (5)  | Cu7—P5—P6  | 128.47 (7)  |
| Cl2—Cu3—N3               | 109.71 (14) | Cu2—P2—Cu4   | 119.11 (5)  | Cl4—Cu6—N6  | 115.85 (14) | Cu7—P5—C21 | 123.63 (13) |
| P2—Cu3—P6                | 106.69 (5)  | Cu2—P2—P3    | 102.92 (6)  | P3—Cu6—N6   | 118.30 (14) | Cu8—P5—P6  | 111.92 (6)  |
| P2—Cu3—N3                | 114.90 (14) | Cu2—P2—C1    | 129.82 (16) | Cl1—Cu7—Cl3 | 92.82 (4)   | Cu8—P5—C21 | 117.68 (17) |
| P6—Cu3—N3                | 111.46 (14) | Cu3—P2—Cu4   | 78.70 (4)   | Cl1—Cu7—P5  | 102.58 (5)  | P6—P5—C21  | 101.00 (14) |
| Cl1—Cu4—Cl2              | 92.76 (4)   | Cu3—P2—P3    | 131.52 (6)  | Cl1—Cu7—N7  | 99.03 (14)  | Cu2—P6—Cu3 | 66.07 (4)   |
| Cl1—Cu4—P2               | 138.01 (5)  | Cu3—P2—C1    | 124.30 (16) | Cl3—Cu7—P5  | 118.94 (5)  | Cu2—P6—P5  | 130.60 (6)  |
| Cl1—Cu4—P3               | 100.61 (4)  | Cu4—P2—P3    | 66.68 (5)   | Cl3—Cu7—N7  | 111.98 (14) | Cu2—P6—C31 | 126.32 (15) |
| Cl1—Cu4—N4               | 106.39 (11) | Cu4—P2—C1    | 110.90 (16) | P5—Cu7—N7   | 122.83 (14) | Cu3—P6—P5  | 106.52 (6)  |
| Cl2—Cu4—P2               | 97.47 (4)   | P3—P2—C1     | 99.93 (15)  | Cl1—Cu8—Cl2 | 96.30 (5)   | Cu3—P6—C31 | 121.21 (14) |
| Cl2—Cu4—P3               | 142.96 (5)  | Cu4—P3—Cu5   | 75.75 (4)   | Cl1—Cu8—P5  | 114.46 (5)  | P5—P6—C31  | 100.03 (14) |
| C                        | (.). ())    | . 0 . 1      |             |             |             |            |             |

Symmetry code(s): (i) -x, -y+2, -z+1



Fig. S 3. Independent part and numbering scheme in  $[{(Cu(MeCN))_7Br_4(P_3C_2(Mes)_2)_2(Cu_2Br_2(MeCN)_2)_2(Cu_2Br_3)_2] \cdot 6MeCN (3 \cdot 6CH_3CN)$ . The hydrogen atoms are not shown.

| Bond      | Distance, Å | Bond                 | Distance, Å | Bond       | Distance, Å | Bond                 | Distance, Å |
|-----------|-------------|----------------------|-------------|------------|-------------|----------------------|-------------|
| Cu1-N1    | 1.974 (6)   | Cu6-Br2              | 2.8521 (12) | Cu3-Cu4    | 2.9743 (13) | Cu10-Br8             | 2.2912 (12) |
| Cu1-P1    | 2.3093 (16) | Cu7-N7               | 1.972 (5)   | Cu4-N4     | 1.987 (6)   | Cu10-Br6             | 2.4143 (13) |
| Cu1-Br4   | 2.4266 (11) | Cu7-P4               | 2.2817 (17) | Cu4-P2     | 2.3086 (15) | Cu10-Br5             | 2.4368 (13) |
| Cu1-Cu2   | 2.5611 (13) | Cu7-Br1              | 2.5044 (11) | Cu4-P5     | 2.3793 (16) | Br7-Cu8 <sup>i</sup> | 2.4852 (10) |
| Cu1-Br3   | 2.6599 (11) | Cu7-Br2              | 2.5580 (11) | Cu4-Br1    | 2.4718 (11) | P1-C1                | 1.738 (6)   |
| Cu2-N2    | 1.971 (5)   | Cu8-N8               | 2.011 (6)   | Cu4-Cu5    | 2.5307 (12) | P1-P2                | 2.1125 (19) |
| Cu2-P1    | 2.2443 (15) | Cu8-P3               | 2.1887 (15) | Cu5-N5     | 1.990 (6)   | P2-C2                | 1.748 (6)   |
| Cu2-Br2   | 2.5049 (11) | Cu8-Br7              | 2.4673 (10) | Cu5-P5     | 2.2930 (15) | P3-C2                | 1.726 (6)   |
| Cu2-Br3   | 2.5392 (11) | Cu8-Br7 <sup>i</sup> | 2.4852 (10) | Cu5-P2     | 2.3864 (16) | P3-C1                | 1.741 (6)   |
| Cu2-Cu3   | 2.9483 (13) | Cu8-Cu8 <sup>i</sup> | 2.9262 (16) | Cu5-Br4    | 2.4536 (11) | P4-C3                | 1.750 (6)   |
| Cu3-N3    | 2.021 (5)   | Cu9-P6               | 2.1687 (16) | Cu6-N6     | 1.972 (6)   | P4-P5                | 2.1007 (19) |
| Cu3-P2    | 2.4198 (16) | Cu9-Br5              | 2.3756 (11) | Cu6-P4     | 2.2298 (16) | P5-C4                | 1.739 (6)   |
| Cu3-P1    | 2.5139 (17) | Cu9-Br6              | 2.3942 (10) | Cu6-Br3    | 2.4155 (11) | P6-C3                | 1.715 (6)   |
| Cu3-Br2   | 2.5634 (11) | Cu9-Cu10             | 3.0074 (13) | Cu6-Cu7    | 2.5987 (13) | P6-C4                | 1.724 (6)   |
| Cu3-Br1   | 2.6403 (11) |                      |             |            |             |                      |             |
| Angle     | Value, °    | Angle                | Value, °    | Angle      | Value, °    | Angle                | Value, °    |
| N1-Cu1-P1 | 118.45 (16) | Cu7-Cu6-Br2          | 55.74 (3)   | P5-Cu4-Br1 | 109.55 (5)  | C2-P2-Cu3            | 110.5 (2)   |

Table S 5. Selected geometric parameters (Å, °) for  $3 \cdot 6 \text{ CH}_3\text{CN}$ 

| N1-Cu1-Br4  | 114.86 (17) | N7-Cu7-P4                | 124.98 (17) | N5-Cu5-P5  | 115.26 (17) | P1-P2-Cu3  | 66.98 (6)   |
|-------------|-------------|--------------------------|-------------|------------|-------------|------------|-------------|
| P1-Cu1-Br4  | 107.74 (5)  | N7-Cu7-Br1               | 105.39 (17) | N5-Cu5-P2  | 108.66 (17) | Cu4-P2-Cu3 | 77.92 (5)   |
| N1-Cu1-Br3  | 97.63 (16)  | P4-Cu7-Br1               | 107.87 (5)  | P5-Cu5-P2  | 106.34 (6)  | Cu5-P2-Cu3 | 119.64 (6)  |
| P1-Cu1-Br3  | 108.43 (5)  | N7-Cu7-Br2               | 103.54 (16) | N5-Cu5-Br4 | 102.74 (17) | C2-P3-C1   | 104.2 (3)   |
| Br4-Cu1-Br3 | 108.85 (4)  | P4-Cu7-Br2               | 114.10 (5)  | P5-Cu5-Br4 | 115.65 (5)  | C2-P3-Cu8  | 123.5 (2)   |
| N2-Cu2-P1   | 116.93 (16) | Br1-Cu7-Br2              | 97.21 (4)   | P2-Cu5-Br4 | 107.89 (5)  | C1-P3-Cu8  | 132.28 (19) |
| N2-Cu2-Br2  | 104.03 (16) | N8-Cu8-P3                | 111.74 (16) | N6-Cu6-P4  | 122.59 (18) | C3-P4-P5   | 100.5 (2)   |
| P1-Cu2-Br2  | 111.29 (5)  | N8-Cu8-Br7               | 106.46 (18) | N6-Cu6-Br3 | 110.51 (18) | C3-P4-Cu6  | 124.4 (2)   |
| N2-Cu2-Br3  | 105.45 (16) | P3-Cu8-Br7               | 113.74 (5)  | P4-Cu6-Br3 | 117.42 (6)  | P5-P4-Cu6  | 128.31 (8)  |
| P1-Cu2-Br3  | 114.95 (5)  | N8-Cu8-Br7 <sup>i</sup>  | 103.59 (18) | C1-P1-Cu2  | 125.0 (2)   | C3-P4-Cu7  | 116.3 (2)   |
| Br2-Cu2-Br3 | 102.71 (3)  | P3-Cu8-Br7 <sup>i</sup>  | 113.04 (5)  | P2-P1-Cu2  | 127.32 (7)  | P5-P4-Cu7  | 113.88 (8)  |
| N3-Cu3-P2   | 108.75 (16) | Br7-Cu8-Br7 <sup>i</sup> | 107.56 (3)  | C1-P1-Cu1  | 121.0 (2)   | Cu6-P4-Cu7 | 70.33 (5)   |
| N3-Cu3-P1   | 103.42 (16) | P6-Cu9-Br5               | 134.04 (6)  | P2-P1-Cu1  | 112.01 (7)  | C4-P5-P4   | 99.8 (2)    |
| P2-Cu3-P1   | 50.66 (5)   | P6-Cu9-Br6               | 121.74 (6)  | Cu2-P1-Cu1 | 68.43 (5)   | C4-P5-Cu5  | 125.3 (2)   |
| N3-Cu3-Br2  | 105.22 (16) | Br5-Cu9-Br6              | 103.64 (4)  | C1-P1-Cu3  | 111.1 (2)   | P4-P5-Cu5  | 132.11 (8)  |
| P2-Cu3-Br2  | 139.92 (5)  | Br8-Cu10-Br6             | 126.90 (5)  | P2-P1-Cu3  | 62.36 (6)   | C4-P5-Cu4  | 121.5 (2)   |
| P1-Cu3-Br2  | 101.20 (5)  | Br8-Cu10-Br5             | 131.57 (6)  | Cu2-P1-Cu3 | 76.34 (5)   | P4-P5-Cu4  | 106.31 (7)  |
| N3-Cu3-Br1  | 102.10 (15) | Br6-Cu10-Br5             | 101.23 (4)  | Cu1-P1-Cu3 | 127.32 (6)  | Cu5-P5-Cu4 | 65.56 (5)   |
| P2-Cu3-Br1  | 99.29 (5)   | C1-P1-P2                 | 100.6 (2)   | C2-P2-P1   | 100.0 (2)   | C3-P6-C4   | 104.4 (3)   |
| P1-Cu3-Br1  | 145.71 (5)  | N4-Cu4-P2                | 114.43 (15) | C2-P2-Cu4  | 123.2 (2)   | C3-P6-Cu9  | 129.6 (2)   |
| Br2-Cu3-Br1 | 93.74 (3)   | N4-Cu4-P5                | 110.63 (16) | P1-P2-Cu4  | 131.91 (7)  | C4-P6-Cu9  | 123.9 (2)   |
| N6-Cu6-Br2  | 98.31 (18)  | P2-Cu4-P5                | 106.07 (6)  | C2-P2-Cu5  | 129.4 (2)   |            |             |
| P4-Cu6-Br2  | 105.55 (5)  | N4-Cu4-Br1               | 108.45 (16) | P1-P2-Cu5  | 104.74 (7)  |            |             |
| Br3-Cu6-Br2 | 96.46 (4)   | P2-Cu4-Br1               | 107.59 (5)  | Cu4-P2-Cu5 | 65.21 (5)   |            |             |

Symmetry code(s): (i) -x, -y, -z.







cFig. S 4. Independent part and numbering scheme in the disordered structure of 4 · CH<sub>3</sub>CN: (a) major part, (b), and (c) minor parts. The hydrogen atoms and atoms belonging to other parts are not shown.

| Table S 6. Selected | geometric | parameters (Å | , °) for <b>4</b> | · CH <sub>3</sub> CN |
|---------------------|-----------|---------------|-------------------|----------------------|
|---------------------|-----------|---------------|-------------------|----------------------|

| Bond                  | Distance, Å | Bond                 | Distance, Å | Bond                    | Distance, Å | Bond    | Distance, Å |
|-----------------------|-------------|----------------------|-------------|-------------------------|-------------|---------|-------------|
| Cu1A-N1A              | 1.998 (6)   | Cu4B-P3              | 2.2192 (18) | Cu2-P1                  | 2.4186 (14) | P2-C2   | 1.742 (5)   |
| Cu1A-Br1              | 2.5111 (13) | N1X-Br4B             | 1.21 (4)    | Cu2-P2                  | 2.5207 (14) | P3-C1   | 1.721 (5)   |
| Cu1A-Br1 <sup>i</sup> | 2.5922 (13) | N1X-Br4C             | 0.70 (5)    | Br2-Cu2 <sup>i</sup>    | 2.5542 (10) | P3-C2   | 1.734 (5)   |
| Cu1A-P2               | 2.2018 (15) | Br4B-Br4C            | 0.670 (4)   | Br2-Cu3                 | 2.4305 (8)  | C1-C11  | 1.489 (7)   |
| N1A-C15N              | 1.128 (9)   | Br3-N2               | 0.507 (13)  | Cu4A-Cu5B               | 2.642 (8)   | C11-C12 | 1.391 (7)   |
| C15N-C16N             | 1.462 (8)   | Br3-C21N             | 0.636 (12)  | Cu4A-Br4A               | 2.516 (6)   | C11-C16 | 1.412 (7)   |
| Cu1B-N1B              | 2.07 (3)    | Br3-C22N             | 2.17 (2)    | Cu4A-Br1I               | 2.493 (6)   | C12-C13 | 1.405 (8)   |
| Cu1B-Br1              | 2.413 (6)   | N2-C21N              | 1.063 (18)  | Cu4A-N4A                | 2.298 (10)  | C12-C17 | 1.494 (7)   |
| Cu1B-P2               | 2.290 (6)   | C21N-C22N            | 1.56 (3)    | Cu4A-P3                 | 2.189 (4)   | C13-C14 | 1.387 (8)   |
| N1B-C13N              | 1.26 (3)    | N4A-C41N             | 1.140 (14)  | Cu5B-Br4A               | 2.334 (8)   | C14-C15 | 1.381 (9)   |
| C13N-C14N             | 1.42 (3)    | C41N-C42N            | 1.468 (19)  | Cu5B-Br3                | 2.166 (7)   | C14-C18 | 1.503 (9)   |
| Cu1C-N1C              | 2.306 (16)  | N4B-C43N             | 1.137 (13)  | Cu5B-P3                 | 2.551 (8)   | C15-C16 | 1.395 (8)   |
| Cu1C-Br1              | 2.540 (5)   | C43N-C44N            | 1.454 (14)  | Cu1I-Br1I               | 2.226 (4)   | C16-C19 | 1.507 (8)   |
| Cu1C-Br2              | 2.526 (5)   | Cu3-Cu2 <sup>i</sup> | 2.8535 (11) | Cu1I-Br1I <sup>ii</sup> | 2.226 (4)   | C2-C21  | 1.485 (7)   |
| Cu1C-P2               | 2.376 (4)   | Cu3-Cu3 <sup>i</sup> | 2.5325 (13) | Cu5A-Cu4B               | 2.861 (7)   | C21-C22 | 1.391 (9)   |
| N1C-C11N              | 1.40 (2)    | Cu3-N3               | 1.987 (5)   | Cu5A-Br4B               | 2.377 (8)   | C21-C26 | 1.413 (9)   |
| C11N-C12N             | 1.12 (2)    | Cu3-P1 <sup>i</sup>  | 2.3211 (12) | Cu5A-Br3                | 2.552 (7)   | C22-C23 | 1.374 (11)  |
| Br1-Cu1A <sup>i</sup> | 2.5921 (13) | Cu3-P1               | 2.3543 (13) | Cu5A-P3                 | 2.341 (8)   | C22-C27 | 1.513 (12)  |
| Br1-Cu2 <sup>i</sup>  | 2.5582 (11) | N3-C31N              | 1.150 (7)   | Cu4B-N1X                | 2.30 (4)    | C23-C24 | 1.416 (14)  |

| Cu2-Br1 <sup>i</sup>                    | 2.5582 (11) | C31N-C32N                              | 1.444 (8)   | Cu4B-Br4B                    | 2.517 (5)   | C24-C25      | 1.386 (12)  |
|-----------------------------------------|-------------|----------------------------------------|-------------|------------------------------|-------------|--------------|-------------|
| Cu2-Br2 <sup>i</sup>                    | 2.5542 (10) | P1-Cu3 <sup>i</sup>                    | 2.3211 (12) | Cu4B-Br4C                    | 2.395 (3)   | C24-C28      | 1.502 (10)  |
| Cu2-Br3                                 | 2.519 (2)   | P1-P2                                  | 2.1115 (17) | Cu4B-N4A                     | 1.945 (8)   | C25-C26      | 1.381 (9)   |
| Cu2-Cu3 <sup>i</sup>                    | 2.8535 (11) | P1-C1                                  | 1.752 (5)   | Cu4B-N4B                     | 2.080 (9)   | C26-C29      | 1.468 (11)  |
| Angle                                   | Value, °    | Angle                                  | Value, °    | Angle                        | Value, °    | Angle        | Value, °    |
| N1A-Cu1A-Br1                            | 106.18 (19) | N4A-Cu4A-Br4A                          | 111.8 (3)   | Cu1C-P2-Cu2                  | 128.75 (11) | Cu4B-P3-Cu5B | 85.21 (18)  |
| N1A-Cu1A-Br1 <sup>i</sup>               | 111.8 (2)   | N4A-Cu4A-Br1I                          | 114.6 (3)   | P1-P2-Cu1A                   | 131.04 (7)  | Cu4B-P3-Cu5A | 77.66 (18)  |
| N1A-Cu1A-P2                             | 116.96 (18) | P3-Cu4A-Cu5B                           | 62.9 (2)    | P1-P2-Cu1B                   | 135.24 (16) | C1-P3-Cu4A   | 123.0 (2)   |
| Br1-Cu1A-Br1 <sup>i</sup>               | 103.89 (4)  | Br1I-Cu4A-Br4A                         | 94.1 (2)    | P3-Cu4A-Br4A                 | 116.6 (2)   | C1-P3-Cu5B   | 92.8 (2)    |
| P2-Cu1A-Br1                             | 119.00 (6)  | N4A-Cu4A-Cu5B                          | 127.9 (3)   | P3-Cu4A-Br1I                 | 117.8 (2)   | C1-P3-Cu5A   | 102.3 (2)   |
| P2-Cu1A-Br1 <sup>i</sup>                | 97.98 (5)   | N2-Br3-Cu5B                            | 105.5 (14)  | P3-Cu4A-N4A                  | 102.6 (3)   | C1-P3-Cu4B   | 123.17 (18) |
| C15N-N1A-Cu1A                           | 172.3 (6)   | N2-Br3-Cu5A                            | 105.4 (14)  | Br4A-Cu5B-Cu4A               | 60.4 (2)    | C1-P3-C2     | 104.7 (2)   |
| N1A-C15N-C16N                           | 178.8 (8)   | N2-Br3-C21N                            | 136.7 (19)  | Br4A-Cu5B-P3                 | 110.1 (3)   | C2-P3-Cu4A   | 129.6 (2)   |
| N1B-Cu1B-Br1                            | 105.5 (8)   | N2-Br3-C22N                            | 146.6 (16)  | Br3-Cu5B-Cu4A                | 164.8 (4)   | C2-P3-Cu5B   | 97.3 (3)    |
| N1B-Cu1B-P2                             | 109.7 (8)   | C21N-Br3-Cu2                           | 140.4 (11)  | Br3-Cu5B-Br4A                | 134.3 (4)   | C2-P3-Cu5A   | 97.5 (3)    |
| P2-Cu1B-Br1                             | 119.5 (3)   | C21N-Br3-C22N                          | 11.7 (12)   | Br3-Cu5B-P3                  | 115.6 (4)   | C2-P3-Cu4B   | 131.96 (17) |
| C13N-N1B-Cu1B                           | 163 (2)     | C22N-Br3-Cu2                           | 151.1 (6)   | P3-Cu5B-Cu4A                 | 49.83 (16)  | P3-C1-P1     | 116.9 (3)   |
| N1B-C13N-C14N                           | 175 (3)     | Br3-C21N-C22N                          | 163.5 (17)  | Cu5B-Br4A-Cu4A               | 65.9 (2)    | C11-C1-P1    | 120.0 (3)   |
| N1C-Cu1C-Br1                            | 109.5 (4)   | N2-C21N-C22N                           | 171.1 (16)  | Br1I-Cu1I-Br1I <sup>ii</sup> | 180.0       | C11-C1-P3    | 122.3 (3)   |
| N1C-Cu1C-Br2                            | 108.6 (4)   | Cu4B-N4A-Cu4A                          | 16.18 (13)  | Cu1I-Br1I-Cu4A               | 118.3 (2)   | C12-C11-C1   | 121.9 (4)   |
| N1C-Cu1C-P2                             | 117.1 (4)   | C41N-N4A-Cu4A                          | 177.2 (7)   | Br4B-Cu5A-Cu4B               | 56.55 (19)  | C12-C11-C16  | 120.2 (5)   |
| Br2-Cu1C-Br1                            | 98.00 (13)  | C41N-N4A-Cu4B                          | 165.3 (9)   | Br4B-Cu5A-Br3                | 145.3 (4)   | C16-C11-C1   | 117.9 (4)   |
| P2-Cu1C-Br1                             | 111.48 (17) | N4A-C41N-C42N                          | 178.7 (17)  | Br3-Cu5A-Cu4B                | 158.0 (3)   | C11-C12-C13  | 118.6 (5)   |
| P2-Cu1C-Br2                             | 110.57 (16) | C43N-N4B-Cu4B                          | 174.3 (10)  | P3-Cu5A-Br4B                 | 105.1 (3)   | C11-C12-C17  | 121.8 (5)   |
| C11N-N1C-Cu1C                           | 117.6 (11)  | N4B-C43N-C44N                          | 179.9 (16)  | P3-Cu5A-Br3                  | 109.5 (3)   | C13-C12-C17  | 119.6 (5)   |
| C12N-C11N-N1C                           | 175.5 (16)  | Br2-Cu3-Cu3 <sup>i</sup>               | 151.00 (2)  | Br4B-Cu4B-Cu5A               | 51.98 (18)  | C14-C13-C12  | 122.3 (5)   |
| Cu1A-Br1-Cu1A <sup>i</sup>              | 75.82 (4)   | Cu3 <sup>i</sup> -Cu3-Cu2 <sup>i</sup> | 101.42 (3)  | Br4C-Cu4B-Cu5A               | 67.3 (2)    | C13-C14-C18  | 122.5 (6)   |
| Cu1A-Br1-Cu2 <sup>i</sup>               | 105.63 (4)  | N3-Cu3-Cu2 <sup>i</sup>                | 137.31 (13) | N4A-Cu4B-Cu5A                | 120.5 (3)   | C15-C14-C13  | 117.8 (5)   |
| Cu1B-Br1-Cu1A <sup>i</sup>              | 103.68 (14) | N3-Cu3-Br2                             | 108.07 (13) | N4A-Cu4B-N1X                 | 112.9 (11)  | C15-C14-C18  | 119.7 (6)   |
| Cu1B-Br1-Cu2 <sup>i</sup>               | 103.80 (15) | N3-Cu3-Cu3 <sup>i</sup>                | 100.91 (12) | N4A-Cu4B-Br4B                | 110.0 (3)   | C14-C15-C16  | 122.3 (5)   |
| Cu1C-Br1-Cu1A <sup>i</sup>              | 114.50 (9)  | N3-Cu3-P1 <sup>i</sup>                 | 111.84 (13) | N4A-Cu4B-Br4C                | 104.4 (3)   | C11-C16-C19  | 122.0 (5)   |
| Cu1C-Br1-Cu2 <sup>i</sup>               | 77.19 (10)  | N3-Cu3-P1                              | 111.04 (13) | N4A-Cu4B-N4B                 | 99.8 (4)    | C15-C16-C11  | 118.7 (5)   |
| Cu2 <sup>i</sup> -Br1-Cu1A <sup>i</sup> | 80.52 (3)   | P1-Cu3-Cu2 <sup>i</sup>                | 111.63 (4)  | N4A-Cu4B-P3                  | 114.3 (2)   | C15-C16-C19  | 119.3 (5)   |
| Br1 <sup>i</sup> -Cu2-Cu3 <sup>i</sup>  | 120.41 (4)  | P1 <sup>i</sup> -Cu3-Br2               | 110.35 (4)  | N4B-Cu4B-Cu5A                | 139.6 (3)   | P3-C2-P2     | 117.8 (3)   |
| Br2 <sup>i</sup> -Cu2-Br1 <sup>i</sup>  | 96.81 (3)   | P1-Cu3-Br2                             | 109.88 (4)  | N4B-Cu4B-N1X                 | 86.9 (12)   | C21-C2-P2    | 119.8 (4)   |
| Br2 <sup>i</sup> -Cu2-Cu3 <sup>i</sup>  | 53.07 (2)   | P1 <sup>i</sup> -Cu3-Cu3 <sup>i</sup>  | 57.84 (4)   | N4B-Cu4B-Br4B                | 115.0 (3)   | C21-C2-P3    | 122.0 (4)   |
| Br3-Cu2-Br1 <sup>i</sup>                | 107.88 (5)  | P1-Cu3-Cu3 <sup>i</sup>                | 56.57 (4)   | N4B-Cu4B-Br4C                | 103.0 (3)   | C22-C21-C2   | 119.3 (6)   |
| Br3-Cu2-Br2 <sup>i</sup>                | 101.14 (4)  | P1 <sup>i</sup> -Cu3-P1                | 105.65 (5)  | N4B-Cu4B-P3                  | 113.7 (3)   | C22-C21-C26  | 118.7 (6)   |
| Br3-Cu2-Cu3 <sup>i</sup>                | 126.01 (5)  | C31N-N3-Cu3                            | 175.7 (4)   | P3-Cu4B-Cu5A                 | 53.07 (16)  | C26-C21-C2   | 122.0 (5)   |
| Br3-Cu2-P2                              | 105.91 (5)  | N3-C31N-C32N                           | 179.3 (6)   | P3-Cu4B-N1X                  | 123.2 (9)   | C21-C22-C27  | 120.0 (6)   |
| P1-Cu2-Br1 <sup>i</sup>                 | 130.89 (5)  | Cu3 <sup>i</sup> -P1-Cu2               | 74.00 (4)   | P3-Cu4B-Br4B                 | 104.31 (13) | C23-C22-C21  | 120.6 (8)   |
| P1-Cu2-Br2 <sup>i</sup>                 | 103.32 (4)  | Cu3-P1-Cu2                             | 121.95 (5)  | P3-Cu4B-Br4C                 | 119.18 (14) | C23-C22-C27  | 119.4 (7)   |
| P1-Cu2-Br3                              | 111.33 (6)  | Cu3 <sup>i</sup> -P1-Cu3               | 65.59 (4)   | Cu5A-Br4B-Cu4B               | 71.5 (2)    | C22-C23-C24  | 121.5 (7)   |
| P1-Cu2-Cu3 <sup>i</sup>                 | 51.44 (3)   | P2-P1-Cu2                              | 67.22 (5)   | Cu2-Br3-Cu5A                 | 106.64 (18) | C23-C24-C28  | 121.5 (8)   |

| P1-Cu2-P2                 | 50.56 (4)  | P2-P1-Cu3 <sup>i</sup> | 129.44 (7)  | Cu5B-Br3-Cu2 | 107.4 (2)   | C25-C24-C23 | 117.2 (6) |
|---------------------------|------------|------------------------|-------------|--------------|-------------|-------------|-----------|
| P2-Cu2-Br1 <sup>i</sup>   | 91.13 (4)  | P2-P1-Cu3              | 110.02 (6)  | P1-P2-Cu1C   | 106.93 (12) | C25-C24-C28 | 121.2 (9) |
| P2-Cu2-Br2 <sup>i</sup>   | 147.88 (5) | C1-P1-Cu2              | 111.07 (16) | P1-P2-Cu2    | 62.21 (5)   | C26-C25-C24 | 122.1 (8) |
| P2-Cu2-Cu3 <sup>i</sup>   | 96.29 (4)  | C1-P1-Cu3 <sup>i</sup> | 123.08 (16) | C2-P2-Cu1A   | 128.61 (18) | C21-C26-C29 | 122.3 (6) |
| Cu1C-Br2-Cu2 <sup>i</sup> | 77.52 (10) | C1-P1-Cu3              | 125.45 (17) | C2-P2-Cu1B   | 117.0 (2)   | C25-C26-C21 | 119.9 (7) |
| Cu3-Br2-Cu1C              | 93.95 (8)  | C1-P1-P2               | 100.87 (17) | C2-P2-Cu1C   | 119.7 (2)   | C25-C26-C29 | 117.8 (7) |
| Cu3-Br2-Cu2 <sup>i</sup>  | 69.79 (3)  | Cu1A-P2-Cu2            | 89.37 (5)   | C2-P2-Cu2    | 111.56 (17) |             |           |
| Br1I-Cu4A-Cu5B            | 116.1 (3)  | Cu1B-P2-Cu2            | 119.47 (15) | C2-P2-P1     | 99.68 (17)  |             |           |

Symmetry code(s): (i) -x+1, y, -z+1/2; (ii) -x+3/2, -y+1/2, -z.



**c Fig. S 5**. Some possible structural fragments in the solid solution of  $4 \cdot CH_3CN$ , a simplified view: (a) an oligomer (~70%), (b) an oligomer (~20%), and (c) a polymer (~10%). The hydrogen atoms and atoms belonging to other parts are not shown.



Fig. S 6. Independent part and numbering scheme in 5 · 2 CH<sub>3</sub>CN. The mesityl ligands are omitted for clarity.

| Bond                 | Distance, Å | Bond                   | Distance, Å |
|----------------------|-------------|------------------------|-------------|
| Cu1A—Br1A            | 2.245 (9)   | Cu10—P23               | 2.231 (3)   |
| Cu1A—Br2A            | 2.223 (11)  | Cu10—P53               | 2.230 (2)   |
| Cu2A—Br1A            | 2.144 (9)   | Cu11—P51               | 2.315 (2)   |
| Cu2A—Br3A            | 2.218 (12)  | Cu11—P61               | 2.301 (2)   |
| Br2—Cu21             | 2.350 (2)   | Cu11—P71               | 2.509 (2)   |
| Br2—Cu22             | 2.295 (13)  | Cu12—Cu13              | 2.8718 (17) |
| Br5—Cu3A             | 2.5138 (17) | Cu12—P61               | 2.538 (2)   |
| Br5—Cu3B             | 2.61 (2)    | Cu12—P62               | 2.469 (2)   |
| Br5—Cu4              | 2.4249 (17) | Cu12—P72               | 2.282 (2)   |
| Cu21—Br11            | 2.395 (3)   | Cu13—Cu14              | 2.5353 (16) |
| Cu21—P43             | 2.180 (3)   | Cu13—P62               | 2.331 (2)   |
| Cu22—Br12            | 2.313 (19)  | Cu13—P81               | 2.326 (2)   |
| Cu22—P43             | 2.514 (14)  | Cu14—P52               | 2.239 (2)   |
| Cu3A—Cu4             | 2.8637 (19) | Cu14—P62               | 2.398 (2)   |
| Cu3A—P12             | 2.276 (3)   | Cu14—P81               | 2.394 (2)   |
| Cu3A—P41             | 2.545 (3)   | Cu15—P73               | 2.233 (2)   |
| Cu3A—P42             | 2.462 (3)   | Cu15—P83 <sup>ii</sup> | 2.252 (3)   |
| Cu3B—Cu4             | 2.902 (19)  | Cu16—Br4A              | 2.380 (2)   |
| Cu3B—P31             | 2.81 (2)    | Cu16—Br3               | 2.347 (2)   |
| Cu3B—P32             | 2.54 (2)    | Cu16—P63               | 2.178 (2)   |
| Cu4—Cu5              | 2.5272 (18) | Cu17—Br4B              | 2.38 (3)    |
| Cu4—P32              | 2.323 (3)   | Cu17—Br3               | 2.24 (2)    |
| Cu4—P42              | 2.316 (2)   | Cu17—P63               | 2.56 (2)    |
| Cu5—P21              | 2.231 (2)   | Cu18—P51               | 2.373 (3)   |
| Cu5—P32              | 2.396 (3)   | Cu18—P71               | 2.282 (2)   |
| Cu5—P42              | 2.402 (3)   | Cu18—P82               | 2.266 (3)   |
| Cu7—Cu8              | 2.6628 (19) | P11—P12                | 2.068 (4)   |
| Cu7—P11              | 2.287 (3)   | P21—P22                | 2.085 (3)   |
| Cu7—P22              | 2.357 (3)   | P31—P32                | 2.097 (3)   |
| Cu7—P31              | 2.268 (2)   | P41—P42                | 2.103 (3)   |
| Cu8—P11              | 2.510 (3)   | P51—P52                | 2.079 (3)   |
| Cu8—P22              | 2.325 (3)   | P61—P62                | 2.104 (3)   |
| Cu8—P41              | 2.301 (2)   | P71—P72                | 2.084 (3)   |
| Cu9—P13              | 2.221 (3)   | P81—P82                | 2.088 (3)   |
| Cu9—P33 <sup>i</sup> | 2.233 (3)   |                        |             |

Table S 7. Selected geometric parameters (Å, °) for  $5\cdot 2$  CH<sub>3</sub>CN

Symmetry code(s): (i) *x*, -*y*+1, *z*-1/2; (ii) *x*, -*y*, *z*-1/2.



Fig. S 7. Independent part and numbering scheme in  $6 \cdot 0.5 \text{ C}_7\text{H}_8 \cdot 2.5 \text{ CH}_3\text{CN}$ . The disordered mesityl ring is shown by lighter colour.

|            |          |           |            | 0   |        |             |         |               |      |                    |
|------------|----------|-----------|------------|-----|--------|-------------|---------|---------------|------|--------------------|
| Table S 8. | Selected | geometric | parameters | (Å, | °) for | $6 \cdot 0$ | 0.5 C7l | $H_8 \cdot 2$ | .5 ( | CH <sub>3</sub> CN |

| Bond       | Distance, Å | Bond       | Distance, Å  | Bond       | Distance, Å  | Bond       | Distance, Å |
|------------|-------------|------------|--------------|------------|--------------|------------|-------------|
| C1-P1      | 1.722 (3)   | Cu1-Cu2    | 2.5556 (7)   | P2-P3      | 2.1047 (11)  | Cu3-Cu4    | 2.5606 (7)  |
| C1-P2      | 1.744 (3)   | Cu1-I4     | 2.6515 (5)   | P2-Cu1     | 2.2918 (9)   | Cu3-I2     | 2.6330 (5)  |
| C11-P1     | 1.727 (4)   | Cu1-I1     | 2.6558 (5)   | P2-Cu2     | 2.3348 (9)   | Cu3-I3     | 2.6941 (6)  |
| C11-P3     | 1.737 (3)   | Cu2-I1     | 2.6433 (5)   | P3-Cu3     | 2.3079 (9)   | Cu4-I4     | 2.6493 (6)  |
| P1-Cu5     | 2.2168 (10) | Cu2-I2     | 2.6671 (5)   | P3-Cu4     | 2.3133 (10)  | Cu4-I3     | 2.6563 (5)  |
| Angle      | Value, °    | Angle      | Value, °     | Angle      | Value, °     | Angle      | Value, °    |
| P1-C1-P2   | 118.10 (19) | P2-Cu2-I2  | 106.18 (3)   | N1-Cu1-P2  | 117.00 (9)   | P3-Cu4-I4  | 106.40 (3)  |
| P1-C11-P3  | 117.77 (18) | Cu1-Cu2-I2 | 118.72 (2)   | N1-Cu1-Cu2 | 136.44 (9)   | Cu3-Cu4-I4 | 116.10 (2)  |
| C1-P1-C11  | 103.90 (15) | I1-Cu2-I2  | 108.048 (18) | P2-Cu1-Cu2 | 57.28 (2)    | N4-Cu4-I3  | 106.21 (10) |
| C1-P1-Cu5  | 126.97 (12) | N3-Cu3-P3  | 116.08 (10)  | N1-Cu1-I4  | 105.84 (9)   | P3-Cu4-I3  | 118.14 (3)  |
| C11-P1-Cu5 | 126.28 (11) | N3-Cu3-Cu4 | 131.81 (10)  | P2-Cu1-I4  | 104.56 (3)   | Cu3-Cu4-I3 | 62.153 (16) |
| C1-P2-P3   | 99.79 (11)  | P3-Cu3-Cu4 | 56.45 (3)    | Cu2-Cu1-I4 | 117.50 (2)   | I4-Cu4-I3  | 104.40 (2)  |
| C1-P2-Cu1  | 132.86 (11) | N3-Cu3-I2  | 107.79 (10)  | N1-Cu1-I1  | 102.68 (9)   | N5-Cu5-N6  | 108.18 (15) |
| P3-P2-Cu1  | 116.60 (4)  | P3-Cu3-I2  | 104.10 (3)   | P2-Cu1-I1  | 117.89 (3)   | N5-Cu5-N7  | 104.12 (16) |
| C1-P2-Cu2  | 127.09 (11) | Cu4-Cu3-I2 | 120.32 (2)   | Cu2-Cu1-I1 | 60.921 (16)  | N6-Cu5-N7  | 106.15 (15) |
| P3-P2-Cu2  | 111.58 (4)  | N3-Cu3-I3  | 100.64 (11)  | I4-Cu1-I1  | 108.121 (18) | N5-Cu5-P1  | 112.92 (12) |
| Cu1-P2-Cu2 | 67.05 (3)   | P3-Cu3-I3  | 116.86 (3)   | N2-Cu2-P2  | 112.96 (9)   | N6-Cu5-P1  | 113.70 (10) |
| C11-P3-P2  | 100.42 (12) | Cu4-Cu3-I3 | 60.667 (16)  | N2-Cu2-Cu1 | 134.91 (10)  | N7-Cu5-P1  | 111.12 (10) |
| C11-P3-Cu3 | 127.26 (11) | I2-Cu3-I3  | 111.29 (2)   | P2-Cu2-Cu1 | 55.67 (2)    | Cu2-I1-Cu1 | 57.668 (15) |
| P2-P3-Cu3  | 117.35 (4)  | N4-Cu4-P3  | 111.22 (12)  | N2-Cu2-I1  | 105.98 (9)   | Cu3-I2-Cu2 | 99.059 (16) |
| C11-P3-Cu4 | 130.81 (12) | N4-Cu4-Cu3 | 133.73 (10)  | P2-Cu2-I1  | 116.78 (3)   | Cu4-I3-Cu3 | 57.179 (15) |
| P2-P3-Cu4  | 112.61 (4)  | P3-Cu4-Cu3 | 56.25 (2)    | Cu1-Cu2-I1 | 61.411 (16)  | Cu4-I4-Cu1 | 98.954 (16) |
| Cu3-P3-Cu4 | 67.30 (3)   | N4-Cu4-I4  | 110.16 (10)  | N2-Cu2-I2  | 106.37 (10)  |            |             |



Fig. S 8. Independent part and numbering scheme in  $7 \cdot 2 C_7 H_8$ .

| Table S 9. Selected geometric parameters (Å, °) for 7 $\cdot$ 2 C7H | 8 |
|---------------------------------------------------------------------|---|
|---------------------------------------------------------------------|---|

| Bond                     | Distance, Å | Bond                                   | Distance, Å | Bond                     | Distance, Å | Bond                                    | Distance, Å |
|--------------------------|-------------|----------------------------------------|-------------|--------------------------|-------------|-----------------------------------------|-------------|
| I1-Cu1                   | 2.8643 (16) | Cu2-I1 <sup>i</sup>                    | 2.6691 (12) | I3-Cu3 <sup>ii</sup>     | 2.6026 (12) | Cu4-I3 <sup>i</sup>                     | 2.5151 (9)  |
| I1-Cu2 <sup>i</sup>      | 2.6690 (12) | Cu2-Cu3                                | 2.8310 (15) | I3-Cu4                   | 2.5152 (9)  | Cu4-P2                                  | 2.191 (3)   |
| I1-Cu3 <sup>i</sup>      | 2.6733 (12) | Cu2-P1                                 | 2.235 (2)   | Cu1-Cu2                  | 2.6883 (18) | P1-P1 <sup>i</sup>                      | 2.077 (5)   |
| I1-Cu3                   | 2.6776 (13) | Cu2-N2                                 | 1.969 (8)   | Cu1-Cu3                  | 2.8639 (18) | P1-C1                                   | 1.727 (7)   |
| I2-Cu1                   | 2.6572 (19) | Cu3-I1 <sup>i</sup>                    | 2.6734 (12) | Cu1-P1                   | 2.428 (3)   | P2-C1                                   | 1.715 (8)   |
| I2-Cu2                   | 2.6595 (13) | Cu3-I3 <sup>iii</sup>                  | 2.6026 (12) | Cu1-N1                   | 1.965 (8)   | P2-C1 <sup>i</sup>                      | 1.715 (8)   |
| I2-Cu3                   | 2.7088 (13) | Cu3-Cu3 <sup>i</sup>                   | 2.876 (2)   |                          |             |                                         |             |
| Angle                    | Value, °    | Angle                                  | Value, °    | Angle                    | Value, °    | Angle                                   | Value, °    |
| I2-Cu1-I1                | 105.43 (6)  | I1 <sup>i</sup> -Cu3-I2                | 112.59 (4)  | I1 <sup>i</sup> -Cu2-Cu3 | 58.07 (3)   | I3 <sup>iii</sup> -Cu3-Cu2              | 140.99 (6)  |
| I2-Cu1-Cu2               | 59.67 (4)   | I1-Cu3-I2                              | 109.36 (4)  | I2-Cu2-I1 <sup>i</sup>   | 114.33 (4)  | I3 <sup>iii</sup> -Cu3-Cu3 <sup>i</sup> | 106.23 (3)  |
| I2-Cu1-Cu3               | 58.62 (4)   | I1 <sup>i</sup> -Cu3-Cu1               | 99.46 (5)   | I2-Cu2-Cu1               | 59.58 (5)   | I3 <sup>i</sup> -Cu4-I3                 | 119.69 (6)  |
| Cu2-Cu1-I1               | 109.84 (5)  | I1-Cu3-Cu1                             | 62.14 (4)   | I2-Cu2-Cu3               | 59.02 (3)   | P2-Cu4-I3 <sup>i</sup>                  | 120.16 (3)  |
| Cu3-Cu1-I1               | 55.74 (4)   | I1 <sup>i</sup> -Cu3-Cu2               | 57.93 (3)   | P1-Cu2-I1 <sup>i</sup>   | 103.13 (7)  | P2-Cu4-I3                               | 120.16 (3)  |
| P1-Cu1-I1                | 117.82 (8)  | I1-Cu3-Cu2                             | 111.16 (5)  | P1-Cu2-I2                | 112.75 (8)  | Cu2-P1-Cu1                              | 70.28 (7)   |
| P1-Cu1-I2                | 106.69 (8)  | I1 <sup>i</sup> -Cu3-Cu3 <sup>i</sup>  | 57.56 (4)   | P1-Cu2-Cu1               | 58.24 (8)   | P1 <sup>i</sup> -P1-Cu1                 | 79.64 (13)  |
| P1-Cu1-Cu2               | 51.49 (6)   | I1-Cu3-Cu3 <sup>i</sup>                | 57.41 (4)   | P1-Cu2-Cu3               | 108.75 (8)  | P1 <sup>i</sup> -P1-Cu2                 | 130.02 (7)  |
| P1-Cu1-Cu3               | 102.36 (7)  | I2-Cu3-Cu1                             | 56.87 (4)   | N2-Cu2-I1 <sup>i</sup>   | 112.8 (2)   | C1-P1-Cu1                               | 125.1 (3)   |
| N1-Cu1-I1                | 100.7 (2)   | I2-Cu3-Cu2                             | 57.33 (3)   | N2-Cu2-I2                | 103.2 (2)   | C1-P1-Cu2                               | 129.3 (3)   |
| N1-Cu1-I2                | 112.1 (2)   | I2-Cu3-Cu3 <sup>i</sup>                | 150.10 (3)  | N2-Cu2-Cu1               | 143.0 (2)   | C1-P1-P1 <sup>i</sup>                   | 100.6 (3)   |
| N1-Cu1-Cu2               | 149.4 (2)   | I3 <sup>iii</sup> -Cu3-I1 <sup>i</sup> | 114.90 (4)  | N2-Cu2-Cu3               | 140.3 (2)   | C1-P2-Cu4                               | 127.7 (3)   |
| N1-Cu1-Cu3               | 143.5 (2)   | I3 <sup>iii</sup> -Cu3-I1              | 107.22 (4)  | N2-Cu2-P1                | 110.9 (2)   | C1 <sup>i</sup> -P2-Cu4                 | 127.7 (3)   |
| N1-Cu1-P1                | 113.9 (2)   | I3 <sup>iii</sup> -Cu3-I2              | 103.37 (4)  | I1 <sup>i</sup> -Cu3-I1  | 109.11 (4)  | C1-P2-C1 <sup>i</sup>                   | 104.6 (5)   |
| I1 <sup>i</sup> -Cu2-Cu1 | 104.17 (5)  | I3 <sup>iii</sup> -Cu3-Cu1             | 145.41 (6)  |                          |             |                                         |             |

Symmetry code(s): (i) -*x*, *y*, -*z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z* 



Fig. S 9. The geometry of the Cu<sub>4</sub>I<sub>4</sub> 'crown' fragment in comparison for (a)  $6 \cdot 0.5 C_7H_8 \cdot 2.5 CH_3CN$  and (b)  $7 \cdot 2 C_7H_8$ .



Fig. S 10. Independent part and numbering scheme in  $8 \cdot 0.5$  CH<sub>2</sub>Cl<sub>2</sub> · 3 CH<sub>3</sub>CN. The hydrogen atoms are not shown.

| Bond      | Distance, Å | Bond       | Distance, Å | Bond        | Distance,<br>Å | Bond       | Distance, Å |
|-----------|-------------|------------|-------------|-------------|----------------|------------|-------------|
| Cu1-Cu2   | 2.553 (3)   | Cu5-P2     | 2.624 (4)   | Cu3-I3      | 2.584 (2)      | Cu8-N5A    | 2.034 (14)  |
| Cu1-Cu6   | 2.516 (3)   | Cu5-P4     | 2.331 (4)   | Cu3-I4      | 2.562 (2)      | Cu8-N6A    | 2.012 (14)  |
| Cu1-I1    | 2.627 (2)   | Cu6-I1     | 2.555 (2)   | Cu3-P1      | 2.306 (4)      | P1-P2      | 2.124 (5)   |
| Cu1-I2    | 2.590 (2)   | Cu6-I6     | 2.599 (2)   | Cu3-P5      | 2.650 (4)      | P1-C1      | 1.727 (14)  |
| Cu1-P2    | 2.511 (4)   | Cu6-P2     | 2.341 (4)   | Cu4-Cu5     | 2.494 (3)      | P2-C2      | 1.730 (12)  |
| Cu1-P5    | 2.522 (4)   | Cu6-P4     | 2.646 (4)   | Cu4-I4      | 2.563 (2)      | P3-C1      | 1.720 (15)  |
| Cu2-Cu3   | 2.483 (3)   | Cu7-P3     | 2.218 (4)   | Cu4-I5      | 2.585 (2)      | P3-C2      | 1.754 (13)  |
| Cu2-I2    | 2.550 (2)   | Cu7-N1A    | 1.983 (13)  | Cu4-P1      | 2.570 (4)      | P4-P5      | 2.122 (5)   |
| Cu2-I3    | 2.586 (2)   | Cu7-N2A    | 2.049 (14)  | Cu4-P4      | 2.543 (4)      | P4-C4      | 1.724 (13)  |
| Cu2-P1    | 2.820 (4)   | Cu7-N3A    | 2.033 (14)  | Cu5-Cu6     | 2.471 (3)      | P5-C3      | 1.719 (13)  |
| Cu2-P5    | 2.304 (4)   | Cu8-P6     | 2.202 (4)   | Cu5-I5      | 2.564 (2)      | P6-C3      | 1.734 (13)  |
| Cu3-Cu4   | 2.537 (3)   | Cu8-N4A    | 1.994 (15)  | Cu5-I6      | 2.587 (2)      | P6-C4      | 1.720 (13)  |
| Angle     | Value, °    | Angle      | Value, °    | Angle       | Value, °       | Angle      | Value, °    |
| I2-Cu1-I1 | 121.75 (8)  | Cu3-P1-Cu4 | 62.42 (10)  | I5-Cu5-P2   | 116.33 (10)    | P5-P4-Cu4  | 94.39 (16)  |
| P2-Cu1-I1 | 109.36 (11) | Cu4-P1-Cu2 | 106.46 (12) | I6-Cu5-P2   | 100.84 (10)    | P5-P4-Cu5  | 127.31 (18) |
| P2-Cu1-I2 | 110.81 (11) | P2-P1-Cu2  | 92.74 (15)  | P4-Cu5-I5   | 116.72 (12)    | P5-P4-Cu6  | 92.21 (15)  |
| P2-Cu1-P5 | 91.38 (12)  | P2-P1-Cu3  | 127.78 (17) | P4-Cu5-I6   | 107.90 (11)    | C4-P4-Cu4  | 127.8 (5)   |
| P5-Cu1-I1 | 109.83 (11) | P2-P1-Cu4  | 93.82 (15)  | P4-Cu5-P2   | 86.21 (12)     | C4-P4-Cu5  | 132.6 (5)   |
| P5-Cu1-I2 | 109.50 (11) | C1-P1-Cu2  | 123.1 (4)   | I1-Cu6-I6   | 123.67 (8)     | C4-P4-Cu6  | 120.6 (4)   |
| I2-Cu2-I3 | 127.23 (8)  | C1-P1-Cu3  | 132.6 (5)   | I1-Cu6-P4   | 114.49 (11)    | C4-P4-P5   | 99.7 (5)    |
| I2-Cu2-P1 | 108.55 (10) | C1-P1-Cu4  | 127.6 (4)   | I6-Cu6-P4   | 98.68 (10)     | Cu1-P5-Cu3 | 107.79 (13) |
| I3-Cu2-P1 | 98.54 (10)  | C1-P1-P2   | 99.2 (5)    | P2-Cu6-I1   | 117.74 (12)    | Cu2-P5-Cu1 | 63.68 (10)  |
| P5-Cu2-I2 | 118.56 (12) | Cu1-P2-Cu5 | 109.46 (13) | P2-Cu6-I6   | 108.65 (11)    | Cu2-P5-Cu3 | 59.66 (10)  |
| P5-Cu2-I3 | 109.02 (12) | Cu6-P2-Cu1 | 62.36 (10)  | P2-Cu6-P4   | 85.49 (12)     | P4-P5-Cu1  | 96.07 (16)  |
| P5-Cu2-P1 | 82.56 (12)  | Cu6-P2-Cu5 | 59.37 (10)  | N1A-Cu7-P3  | 117.1 (3)      | P4-P5-Cu2  | 135.07 (18) |
| I3-Cu3-P5 | 99.17 (10)  | P1-P2-Cu1  | 96.03 (16)  | N1A-Cu7-N2A | 96.9 (5)       | P4-P5-Cu3  | 94.30 (15)  |
| I4-Cu3-I3 | 120.56 (9)  | P1-P2-Cu5  | 93.72 (15)  | N1A-Cu7-N3A | 104.1 (5)      | C3-P5-Cu1  | 126.6 (5)   |
| I4-Cu3-P5 | 111.57 (10) | P1-P2-Cu6  | 130.89 (18) | N2A-Cu7-P3  | 122.1 (3)      | C3-P5-Cu2  | 124.6 (5)   |
| P1-Cu3-I3 | 113.80 (12) | C2-P2-Cu1  | 128.5 (4)   | N3A-Cu7-P3  | 113.5 (3)      | C3-P5-Cu3  | 121.2 (5)   |
| P1-Cu3-I4 | 117.60 (12) | C2-P2-Cu5  | 117.3 (4)   | N3A-Cu7-N2A | 100.1 (5)      | C3-P5-P4   | 99.9 (5)    |
| P1-Cu3-P5 | 86.42 (13)  | C2-P2-Cu6  | 127.4 (5)   | N4A-Cu8-P6  | 119.2 (4)      | C3-P6-Cu8  | 120.9 (4)   |
| I4-Cu4-I5 | 121.85 (9)  | C2-P2-P1   | 101.0 (5)   | N4A-Cu8-N5A | 100.3 (6)      | C4-P6-Cu8  | 134.4 (5)   |
| I4-Cu4-P1 | 108.50 (11) | C1-P3-Cu7  | 126.2 (5)   | N4A-Cu8-N6A | 106.1 (5)      | C4-P6-C3   | 103.3 (6)   |
| P1-Cu4-I5 | 111.56 (11) | C1-P3-C2   | 103.6 (6)   | N5A-Cu8-P6  | 109.0 (4)      | P3-C1-P1   | 119.3 (8)   |
| P4-Cu4-I4 | 109.52 (11) | C2-P3-Cu7  | 128.7 (4)   | N6A-Cu8-P6  | 118.4 (4)      | P2-C2-P3   | 116.9 (8)   |
| P4-Cu4-I5 | 108.77 (11) | Cu4-P4-Cu6 | 108.63 (13) | N6A-Cu8-N5A | 100.9 (5)      | P5-C3-P6   | 118.4 (8)   |
| P4-Cu4-P1 | 92.74 (12)  | Cu5-P4-Cu4 | 61.36 (10)  | Cu3-P1-Cu2  | 56.89 (10)     | P6-C4-P4   | 118.7 (8)   |
| I5-Cu5-I6 | 122.21 (8)  | Cu5-P4-Cu6 | 59.13 (10)  |             |                |            |             |

Table S 10. Selected geometric parameters (Å, °) for  $8 \cdot 0.5 \ \text{CH}_2\text{Cl}_2 \cdot 3 \ \text{CH}_3\text{CN}$ 



Fig. S 11. Independent part and numbering scheme in  $9 \cdot 0.6 \text{ CH}_2\text{Cl}_2$ . The hydrogen atoms are not shown.

| Bond       | Distance, Å | Bond       | Distance, Å | Bond        | Distance, Å | Bond                    | Distance,<br>Å |
|------------|-------------|------------|-------------|-------------|-------------|-------------------------|----------------|
| I1-Cu1     | 2.5363 (12) | Cu6-P5     | 2.835 (2)   | Cu1-P1      | 2.7777 (19) | Fe1-C52                 | 2.054 (9)      |
| I1-Cu2     | 2.6170 (11) | Cu7-P3     | 2.2513 (19) | Cu1-P5      | 2.313 (2)   | P1-P2                   | 2.113 (2)      |
| I2-Cu2     | 2.5947 (11) | Cu7-P6     | 2.2556 (19) | Cu2-P2      | 2.458 (2)   | P1-C1                   | 1.725 (6)      |
| I2-Cu3     | 2.5330 (14) | Cu7-N1     | 1.997 (6)   | Cu2-P5      | 2.4628 (19) | P2-C2                   | 1.717 (6)      |
| I3-Cu3     | 2.5627 (13) | Cu7-N2     | 2.019 (6)   | Cu3-P2      | 2.304 (2)   | P3-C1                   | 1.742 (6)      |
| I3-Cu4     | 2.5869 (13) | Fe1-C53    | 2.072 (9)   | Cu3-P4      | 2.910 (2)   | P3-C2                   | 1.736 (6)      |
| I4-Cu4     | 2.5744 (14) | Fe1-C54    | 2.066 (9)   | Cu4-P2      | 2.745 (2)   | P4-C22 <sup>i</sup>     | 1.725 (6)      |
| I4-Cu5     | 2.6066 (13) | Fe1-C55    | 2.084 (9)   | Cu4-P4      | 2.321 (2)   | P4-P5                   | 2.111 (2)      |
| I5-Cu5     | 2.5919 (13) | Fe1-N3     | 1.939 (7)   | Cu5-P1      | 2.564 (2)   | P5-C21 <sup>i</sup>     | 1.747 (6)      |
| I5-Cu6     | 2.5374 (14) | Fe1-N4     | 1.925 (6)   | Cu5-P4      | 2.498 (2)   | P6-C21                  | 1.709 (6)      |
| I6-Cu1     | 2.5870 (13) | Fe1-N5     | 1.952 (8)   | Cu6-P1      | 2.315 (2)   | P6-C22                  | 1.747 (6)      |
| Іб-Сиб     | 2.6004 (13) | Fe1-C51    | 2.096 (9)   |             |             |                         |                |
| Angle      | Value, °    | Angle      | Value, °    | Angle       | Value, °    | Angle                   | Value, °       |
| N3-Fe1-C52 | 157.9 (3)   | Cu6-P1-P2  | 126.93 (9)  | C52-Fe1-C53 | 41.3 (4)    | Cu5-P4-C22 <sup>i</sup> | 132.9 (2)      |
| N3-Fe1-C53 | 139.4 (4)   | Cu2-P2-Cu4 | 107.05 (7)  | C52-Fe1-C54 | 69.1 (4)    | P5-P4-C22 <sup>i</sup>  | 100.6 (2)      |
| N3-Fe1-C54 | 101.5 (4)   | Cu2-P2-Cu3 | 64.22 (6)   | C52-Fe1-C55 | 67.6 (4)    | Cu4-P4-C22 <sup>i</sup> | 129.5 (2)      |

Table S 11. Selected geometric parameters (Å, °) for  $9\cdot 0.6~\text{CH}_2\text{Cl}_2$ 

| N3-Fe1-C55  | 92.0 (3)  | Cu3-P2-C2               | 123.2 (2)   | C53-Fe1-C54 | 40.3 (5)   | Cu5-P4-P5               | 99.12 (8)  |
|-------------|-----------|-------------------------|-------------|-------------|------------|-------------------------|------------|
| N4-Fe1-N5   | 93.9 (3)  | Cu4-P2-P1               | 91.15 (8)   | C53-Fe1-C55 | 67.4 (4)   | Cu4-P4-P5               | 126.60 (9) |
| N4-Fe1-C51  | 153.5 (3) | Cu4-P2-C2               | 126.8 (2)   | C54-Fe1-C55 | 40.8 (4)   | Cu6-P5-C21 <sup>i</sup> | 125.8 (2)  |
| N4-Fe1-C52  | 113.4 (3) | Cu2-P2-P1               | 100.73 (8)  | N3-Fe1-N4   | 87.9 (3)   | P4-P5-C21 <sup>i</sup>  | 99.9 (2)   |
| N4-Fe1-C53  | 89.0 (3)  | Cu2-P2-C2               | 120.7 (2)   | N3-Fe1-N5   | 88.3 (3)   | Cu2-P5-C21 <sup>i</sup> | 124.2 (2)  |
| N4-Fe1-C54  | 102.9 (3) | Cu3-P2-Cu4              | 58.32 (6)   | N3-Fe1-C51  | 118.0 (3)  | Cu6-P5-P4               | 89.21 (7)  |
| N4-Fe1-C55  | 142.7 (3) | Cu3-P2-P1               | 135.19 (10) | P2-P1-C1    | 100.1 (2)  | Cu1-P5-Cu2              | 63.46 (5)  |
| N5-Fe1-C51  | 92.4 (3)  | P1-P2-C2                | 101.1 (2)   | Cu1-P1-P2   | 87.97 (7)  | Cu1-P5-Cu6              | 55.83 (5)  |
| N5-Fe1-C52  | 95.8 (3)  | Cu7-P3-C1               | 124.6 (2)   | Cu1-P1-C1   | 117.8 (2)  | Cu1-P5-P4               | 130.18 (9) |
| N5-Fe1-C53  | 132.3 (4) | Cu7-P3-C2               | 121.3 (2)   | Cu1-P1-Cu5  | 104.44 (7) | Cu1-P5-C21 <sup>i</sup> | 128.7 (2)  |
| N5-Fe1-C54  | 160.7 (3) | C1-P3-C2                | 104.2 (3)   | Cu1-P1-Cu6  | 56.74 (5)  | Cu2-P5-Cu6              | 105.77 (7) |
| N5-Fe1-C55  | 123.3 (3) | Cu3-P4-C22 <sup>i</sup> | 118.0 (2)   | Cu5-P1-P2   | 96.32 (8)  | Cu2-P5-P4               | 100.76 (8) |
| C51-Fe1-C52 | 40.3 (4)  | Cu4-P4-Cu5              | 62.36 (6)   | Cu5-P1-C1   | 134.9 (2)  | C21-P6-C22              | 104.4 (3)  |
| C51-Fe1-C53 | 68.0 (3)  | Cu3-P4-P5               | 87.78 (7)   | Cu5-P1-Cu6  | 62.24 (6)  | Cu7-P6-C21              | 121.4 (2)  |
| C51-Fe1-C54 | 68.4 (4)  | Cu3-P4-Cu4              | 55.49 (5)   | Cu6-P1-C1   | 130.2 (2)  | Cu7-P6-C22              | 125.3 (2)  |
| C51-Fe1-C55 | 39.8 (4)  | Cu3-P4-Cu5              | 105.07 (7)  |             |            |                         |            |

Symmetry code(s): (i) x+1, y, z.



Fig. S 12. Comparison of the geometries of the  $Cu_6I_6$  'hexagram' fragments in (a)  $8 \cdot 0.5 CH_2Cl_2 \cdot 3 CH_3CN$  and (b)  $9 \cdot 0.6 CH_2Cl_2$ .

#### 4. MAS-NMR Details



**Fig. S13.** <sup>31</sup>P{<sup>1</sup>H} MAS NMR spectrum of **6**, recorded at 202.48 MHz (11.7 T) and 29762 Hz MAS using a commercially available Bruker 2.5 mm HXY triple-resonance probe. The data were obtained using a rotor-synchronized Hahn-Echo ( $t_R = 33.6\mu$ s), 8196 scans were acquired at a relaxation delay of 10s and a rf-field strength of 100 kHz ( $\pi$ /2-pulse of 2.5 $\mu$ s). Spinning sidebands are marked with asterisks.



**Fig. S14.** <sup>65</sup>Cu MAS NMR spectrum of **6**, acquired at 142.02 MHz (11.7 T) and 20 kHz MAS using a commercially available Bruker 2.5 mm HXY triple-resonance probe averaging 189.000 Scans at a relaxation delay of 100 ms and a  $\pi$ /12-pulse of 0.5  $\mu$ s (rf-field strength of 83.3 kHz).

#### References

- 1 G. Scheldrick, *Acta Cryst. ser. A.*, **2008**, *64*, 112-122.
- 2 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.* **1999**, *32*, 115-119.