Electronic Supplementary Information (ESI)

New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'dipyridylamine: synthesis, structures, DNA/protein binding, molecular docking, antioxidant activity and cytotoxicity

Ceyda Icsel, Veysel T. Yilmaz,* Hale Samli, Yunus Kaya, William T. A. Harrison, Orhan Buyukgungor

List of contents:

Figures

Fig. S1 Stability of complexes 1, 2 and 5 in MeOH and a saline solution (0.9% NaCl). Stability values are expressed as the percentage of the complexes remaining in the solution after 24 h.

Fig. S2 Electronic absorption spectra of complexes 1–6 (25 μ M each) upon the titration of FS-DNA (0–50 μ M) in Tris-HCl buffer. The arrow shows the increases in absorbance with respect to an increase in the FS-DNA concentration. The inset shows the linear fit of [DNA]/($\varepsilon_a - \varepsilon_f$) vs. [DNA].

Fig. S3 Emission spectra of EB bound to DNA in the absence and presence of increasing concentrations of complexes 1-6 (12.5–100 μ M) in Tris-HCl buffer. [EB] = 5.0 μ M, [DNA] 50.0 μ M. The arrows show the changes in intensity upon increasing amounts of the complexs. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S4 Emission spectra of Hoechst 33258-bound DNA solutions in the absence and presence of increasing concentrations of complexes **1** and **3** (2.5–25 μ M) in Tris-HCl buffer. [Hoechst 33258] = 5.0 μ M, [DNA] 50.0 μ M. The arrows show the changes in intensity upon increasing amounts of the complexes. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S5 The relative viscosity of FS-DNA upon addition of increasing amounts of complexes 1–6 in Tris-HCl buffer. η is the viscosity of DNA in the presence of complex, and η_0 is the viscosity of DNA alone. r = 0.25-2.0.

Fig. S6 Thermal denaturation profiles of FS-DNA in the absence and in the presence of complexes 1-6 in Tris-HCl buffer at r = 0.5.

Fig. S7 Computational docking models (using the Autodock/Vina software) illustrating the interactions between DNA and complexes 1–6.

Tables

Table S1 Hydrogen bonding interactions and the binding free energy of the most stable docking conformations for complexes 1-6docked into DNA.

Fig. S1 Stability of complexes 1, 2 and 5 in MeOH and a saline solution (0.9% NaCl). Stability values are expressed as the percentage of the complexes remaining in the solution after 24 h.

Fig. S2 Electronic absorption spectra of complexes 1–6 (25 μ M each) upon the titration of FS-DNA (0–50 μ M) in Tris-HCl buffer. The arrow shows the increases in absorbance with respect to an increase in the FS-DNA concentration. The inset shows the linear fit of [DNA]/($\varepsilon_a - \varepsilon_f$) vs. [DNA].

Fig. S3 Emission spectra of EB bound to DNA in the absence and presence of increasing concentrations of complexes 1-6 (12.5–100 μ M) in Tris-HCl buffer. [EB] = 5.0 μ M, [DNA] 50.0 μ M. The arrows show the changes in intensity upon increasing amounts of the complexs. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S4 Emission spectra of Hoechst 33258-bound DNA solutions in the absence and presence of increasing concentrations of complexes 1 and 3 (2.5–25 μ M) in Tris-HCl buffer. [Hoechst 33258] = 5.0 μ M, [DNA] 50.0 μ M. The arrows show the changes in intensity upon increasing amounts of the complexes. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S5 The relative viscosity of FS-DNA upon addition of increasing amounts of complexes 1-6 in Tris-HCl buffer. η is the viscosity of DNA in the presence of complex, and η_0 is the viscosity of DNA alone. r = 0.25-2.0.

Fig. S6 Thermal denaturation profiles of FS-DNA in the absence and in the presence of complexes 1-6 in Tris-HCl buffer at r = 0.5.

Fig. S7 Computational docking models (using the Autodock/Vina software) illustrating the interactions between DNA and complexes 1–6.

Table S1 Hydrogen bonding interactions and the binding free energy of the most stable docking conformations for complexes 1–6 dockedinto DNA

Complexes	Donor	Acceptor	$H{\cdots}A$	ΔG
	(D-H)	(H···A)	(Å)	(kJ mol ⁻¹)
1	N6–H6 (barb)	O (DG4)	2.28	-32.22
2	N–H (DA3)	O1 (barb)	2.31	-29.71
	N-H (DA2)	O1 (barb)	2.48	
3	N-H (DG2)	O6 (barb)	2.54	-29.71
	N-H (DG4)	O3 (barb)	2.10	
	N4–H4 (barb)	O (DG4)	2.37	
4	N-H (DA11)	O1 (barb)	2.08	-28.03
5	N–H (DA3)	O6 (barb)	2.28	-30.96
	N-H (DC13)	O1 (barb)	2.31	
	N-H (DA3)	O1 (barb)	2.54	
	N7–H7 (barb)	N7 (DA3)	2.59	
	N7–H7 (barb)	N7 (DA2)	2.79	
6	N–H (DC5)	O2 (barb)	2.18	-27.61
	N4-H4 (barb)	N (DA11)	2.89	