Discrete polynuclear manganese(II) complexes with thiacalixarene ligands:

synthesis, structures and photophysical properties †

Yan Suffren,^{*a} Niall O'Toole,^b Andreas Hauser,^a Erwann Jeanneau,^b Arnaud Brioude,^b Cédric Desroches^{*b}

^a Département de chimie physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland. E-mail: <u>Yan.Suffren@unige.ch</u>

^b Laboratoire des Multimatériaux et Interfaces (UMR 5615), Université Claude Bernard de

Lyon 1, Campus de la Doua, 69622 Villeurbanne, France. E-mail: cedric.desroches@univlyon1.fr

Electronic Supporting Information

CCDC reference number 1050380.

Crystal data

$C_{80}H_{88}FMn_4O_{24}S_8\cdot C_{14}H_{30}KO_8\cdot 2(CH_4O)$	<i>Z</i> = 1
$M_r = 2358.31$	F(000) = 1230.000
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.502 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: $P\overline{1}$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 12.0143 (9) Å	Cell parameters from 19966 reflections
b = 12.3064 (7) Å	$\theta = 3.5 - 29.4^{\circ}$
c = 18.2691 (8) Å	$\mu = 0.76 \text{ mm}^{-1}$
$\alpha = 101.431 \ (4)^{\circ}$	T = 100 K
$\beta = 99.543 \ (6)^{\circ}$	Plate, colorless
$\gamma = 90.807 \ (5)^{\circ}$	$0.26 \times 0.24 \times 0.09 \text{ mm}$
$V = 2607.8 (3) \text{ Å}^3$	

Data collection

Xcalibur, Atlas, Gemini ultra diffractometer	13313 independent reflections
Radiation source: Enhance (Mo) X-ray Source	10415 reflections with $I > 2.0\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.067$
Detector resolution: 10.4685 pixels mm ⁻¹	$\theta_{max}=29.5^{\circ},\theta_{min}=2.9^{\circ}$
ω scans	$h = -16 \rightarrow 16$
Absorption correction: analytical <i>CrysAlis PRO</i> , Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	<i>k</i> = -16→16
$T_{\min} = 0.843, T_{\max} = 0.940$	<i>l</i> = -25→23
67424 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.125$	Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) \dots + A_{n-1}]*T_{n-1}(x)]$ where A_i are the Chebychev coefficients listed below and $x = F /F$ max Method = Robust Weighting (Prince, 1982) W = [weight] * [1- (deltaF/6*sigmaF) ²] ² A_i are: 463. 674. 348. 88.5
<i>S</i> = 0.98	$(\Delta/\sigma)_{max} = 0.001$
13282 reflections	$\Delta \lambda_{\rm max} = 1.24 \ {\rm e} \ {\rm \AA}^{-3}$
710 parameters	Δ _{min} = -0.95 e Å ⁻³
2 restraints	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Mn1	0.45212 (4)	0.32580 (4)	0.49935 (3)	0.0166	
F2	0.5000	0.5000	0.5000	0.0163	
Mn3	0.32300 (4)	0.54240 (4)	0.49771 (3)	0.0170	
O4	0.61314 (19)	0.36636 (18)	0.58294 (13)	0.0196	
C5	0.6556 (3)	0.3406 (2)	0.64741 (19)	0.0183	
C6	0.5963 (3)	0.2734 (3)	0.68488 (19)	0.0192	
S7	0.45234 (7)	0.23240 (6)	0.65371 (5)	0.0190	
08	0.42726 (19)	0.20842 (17)	0.57177 (14)	0.0202	
O9	0.4267 (2)	0.14429 (19)	0.69048 (14)	0.0232	
C10	0.3780 (3)	0.3484 (3)	0.6898 (2)	0.0219	
C11	0.3382 (3)	0.4296 (2)	0.64657 (19)	0.0183	
012	0.35330 (19)	0.42667 (18)	0.57757 (13)	0.0197	
C13	0.2772 (3)	0.5128 (3)	0.6875 (2)	0.0211	
S14	0.21702 (6)	0.62428 (6)	0.65031 (5)	0.0190	
015	0.19683 (19)	0.59531 (19)	0.56848 (14)	0.0219	
016	0.1211 (2)	0.65542 (19)	0.68606 (14)	0.0234	
C17	0.6804 (3)	0.2651 (2)	0.31850 (19)	0.0192	
C18	0.5874 (3)	0.2534 (2)	0.35613 (19)	0.0180	
019	0.57444 (19)	0.31776 (18)	0.41971 (14)	0.0202	
C20	0.5103 (3)	0.1636 (3)	0.3164 (2)	0.0201	

S21	0.37967 (6)	0.13984 (6)	0.34455 (5)	0.0184	
O22	0.39283 (19)	0.16503 (17)	0.42655 (13)	0.0193	
O23	0.3370 (2)	0.02955 (18)	0.30718 (14)	0.0224	
C24	0.2876 (3)	0.2335 (3)	0.30675 (19)	0.0197	
C25	0.2375 (3)	0.1939 (3)	0.2316 (2)	0.0221	
C26	0.1625 (3)	0.2535 (3)	0.1912 (2)	0.0237	
C27	0.1378 (3)	0.3560 (3)	0.2315 (2)	0.0227	
C28	0.1875 (3)	0.3980 (3)	0.30581 (19)	0.0195	
C29	0.2683 (3)	0.3400 (2)	0.34869 (19)	0.0180	
O30	0.31566 (18)	0.37943 (17)	0.41822 (13)	0.0190	
S31	0.14426 (6)	0.53215 (6)	0.34188 (5)	0.0190	
C32	0.7669 (3)	0.3754 (2)	0.68770 (19)	0.0190	
C33	0.8116 (3)	0.3454 (3)	0.75512 (19)	0.0210	
C34	0.7523 (3)	0.2787 (3)	0.7899 (2)	0.0233	
C35	0.6433 (3)	0.2436 (3)	0.7524 (2)	0.0225	
H351	0.5997	0.1985	0.7733	0.0271*	
C36	0.8059 (3)	0.2485 (3)	0.8646 (2)	0.0331	
C37	0.7194 (4)	0.1898 (4)	0.8984 (3)	0.0491	
H371	0.7555	0.1740	0.9462	0.0736*	
H372	0.6916	0.1210	0.8643	0.0736*	
H373	0.6558	0.2353	0.9061	0.0739*	
C38	0.8522 (4)	0.3551 (4)	0.9218 (2)	0.0398	
H383	0.8782	0.3394	0.9707	0.0596*	
H382	0.7931	0.4072	0.9261	0.0601*	
H381	0.9141	0.3880	0.9050	0.0597*	
C39	0.9024 (4)	0.1717 (4)	0.8508 (3)	0.0451	
H391	0.9368	0.1525	0.8980	0.0677*	
H392	0.8737	0.1057	0.8144	0.0676*	
H393	0.9592	0.2076	0.8311	0.0678*	
H331	0.8847	0.3719	0.7787	0.0244*	
O40	0.16218 (19)	0.55216 (19)	0.42352 (14)	0.0216	
O41	0.0312 (2)	0.5416 (2)	0.30351 (15)	0.0242	
H271	0.0851	0.3975	0.2071	0.0268*	
C42	0.1071 (3)	0.2125 (3)	0.1084 (2)	0.0279	
C43	0.1238 (4)	0.3021 (3)	0.0629 (2)	0.0366	
C44	-0.0193 (4)	0.1892 (4)	0.1046 (3)	0.0447	
H443	-0.0560	0.1654	0.0524	0.0668*	
H441	-0.0541	0.2540	0.1281	0.0671*	
H442	-0.0302	0.1309	0.1308	0.0670*	
C45	0.1588 (5)	0.1071 (4)	0.0721 (3)	0.0484	

H451	0.1215	0.0828	0.0201	0.0727*	
H452	0.2380	0.1208	0.0733	0.0728*	
H453	0.1496	0.0490	0.0998	0.0729*	
H251	0.2559	0.1237	0.2078	0.0272*	
C46	0.5266 (3)	0.0934 (3)	0.2500 (2)	0.0240	
C47	0.6187 (3)	0.1062 (3)	0.2157 (2)	0.0267	
C48	0.6949 (3)	0.1945 (3)	0.25149 (19)	0.0219	
H481	0.7581	0.2065	0.2303	0.0259*	
C49	0.6435 (3)	0.0276 (3)	0.1441 (3)	0.0451	
C50	0.5493 (5)	-0.0603 (4)	0.1120 (3)	0.0572	
H502	0.5693	-0.1078	0.0675	0.0859*	
H503	0.4788	-0.0238	0.0988	0.0860*	
H501	0.5422	-0.1034	0.1504	0.0860*	
C51	0.6629 (6)	0.0941 (5)	0.0860 (3)	0.0701	
H513	0.6788	0.0447	0.0416	0.1057*	
H511	0.7264	0.1456	0.1074	0.1056*	
H512	0.5955	0.1334	0.0729	0.1060*	
C52	0.7501 (4)	-0.0316 (4)	0.1625 (4)	0.0744	
H523	0.7668	-0.0797	0.1169	0.1088*	
H522	0.8133	0.0216	0.1841	0.1088*	
H521	0.7365	-0.0768	0.1986	0.1091*	
H461	0.4721	0.0365	0.2282	0.0291*	
C53	0.2629 (3)	0.5158 (3)	0.7616 (2)	0.0238	
C54	0.3075 (3)	0.4378 (3)	0.8029 (2)	0.0253	
C55	0.3641 (3)	0.3540 (3)	0.7647 (2)	0.0227	
H551	0.3940	0.2984	0.7891	0.0272*	
C56	0.2923 (3)	0.4486 (3)	0.8856 (2)	0.0287	
C57	0.3511 (4)	0.3573 (4)	0.9216 (2)	0.0409	
H572	0.3399	0.3677	0.9735	0.0607*	
H573	0.3190	0.2859	0.8941	0.0609*	
H571	0.4311	0.3612	0.9199	0.0607*	
C58	0.1658 (4)	0.4404 (4)	0.8892 (2)	0.0353	
H581	0.1550	0.4490	0.9410	0.0526*	
H582	0.1332	0.3695	0.8605	0.0531*	
H583	0.1272	0.4973	0.8678	0.0529*	
C59	0.3450 (4)	0.5607 (3)	0.9314 (2)	0.0383	
H592	0.3406	0.5670	0.9842	0.0568*	
H593	0.3060	0.6205	0.9135	0.0570*	
H591	0.4239	0.5668	0.9264	0.0568*	
H531	0.2205	0.5718	0.7845	0.0283*	

K60	0.0000	0.0000	0.5000	0.0298	
O61	0.0353 (2)	0.0489 (2)	0.65806 (16)	0.0297	
C62	-0.0357 (5)	-0.0241 (5)	0.6878 (4)	0.0229	0.559 (8)
C63	0.0532 (9)	-0.0366 (7)	0.6937 (6)	0.0390	0.441 (8)
C64	-0.0232 (4)	-0.1362 (3)	0.6550 (3)	0.0367	
O65	-0.0695 (6)	-0.1655 (4)	0.5770 (3)	0.0228	0.559 (8)
O66	-0.0140 (8)	-0.1668 (6)	0.5810 (5)	0.0321	0.441 (8)
C67	-0.0868 (9)	-0.2625 (11)	0.5428 (9)	0.0338	0.441 (8)
C68	-0.0457 (8)	-0.2738 (7)	0.5394 (5)	0.0215	0.559 (8)
C69	0.1052 (7)	0.2889 (7)	0.5398 (6)	0.0231	0.559 (8)
C70	0.0625 (10)	0.2971 (10)	0.5367 (9)	0.0305	0.441 (8)
O71	0.1012 (8)	0.2130 (7)	0.5750 (5)	0.0342	0.441 (8)
O72	0.0497 (5)	0.2183 (5)	0.5783 (3)	0.0236	0.559 (8)
C73	0.0970 (4)	0.2298 (3)	0.6531 (2)	0.0368	
C74	0.0339 (5)	0.1586 (5)	0.6917 (3)	0.0226	0.559 (8)
C75	0.1171 (8)	0.1450 (7)	0.6886 (6)	0.0330	0.441 (8)
O76	0.3831 (4)	0.4796 (4)	0.1470 (3)	0.0676	
C77	0.4291 (4)	0.4068 (4)	0.1946 (3)	0.0489	
O78	0.2281 (3)	0.0004 (3)	0.4971 (3)	0.0590	
C79	0.3124 (6)	-0.0739 (5)	0.4994 (5)	0.0803	
H671	-0.0719	-0.3227	0.5697	0.0401*	0.441 (8)
H672	-0.1653	-0.2441	0.5412	0.0400*	0.441 (8)
H681	0.0350	-0.2800	0.5401	0.0260*	0.559 (8)
H682	-0.0735	-0.3296	0.5636	0.0261*	0.559 (8)
H692	0.1018	0.3656	0.5654	0.0281*	0.559 (8)
H691	0.1833	0.2699	0.5404	0.0277*	0.559 (8)
H701	-0.0181	0.3046	0.5355	0.0369*	0.441 (8)
H702	0.1019	0.3673	0.5618	0.0370*	0.441 (8)
H741	-0.0439	0.1807	0.6876	0.0270*	0.559 (8)
H742	0.0677	0.1692	0.7450	0.0268*	0.559 (8)
H751	0.1147	0.1706	0.7421	0.0400*	0.441 (8)
H752	0.1925	0.1210	0.6825	0.0400*	0.441 (8)
H732	0.0193	0.2497	0.6576	0.0439*	0.441 (8)
H734	0.1484	0.2925	0.6794	0.0438*	0.441 (8)
H733	0.0998	0.3070	0.6791	0.0437*	0.559 (8)
H731	0.1741	0.2039	0.6554	0.0438*	0.559 (8)
H643	-0.0076	-0.1977	0.6806	0.0440*	0.441 (8)
H644	-0.1007	-0.1158	0.6570	0.0439*	0.441 (8)
H642	0.0579	-0.1492	0.6599	0.0439*	0.559 (8)
H641	-0.0588	-0.1842	0.6819	0.0436*	0.559 (8)

H631	0.1314	-0.0566	0.6938	0.0460*	0.441 (8)
H632	0.0404	-0.0136	0.7455	0.0458*	0.441 (8)
H621	-0.0126	-0.0133	0.7427	0.0278*	0.559 (8)
H622	-0.1146	-0.0063	0.6759	0.0277*	0.559 (8)
H791	0.3512	-0.0760	0.4569	0.1213*	
H793	0.2779	-0.1462	0.4967	0.1210*	
H792	0.3645	-0.0523	0.5464	0.1213*	
H773	0.3809	0.3993	0.2305	0.0734*	
H771	0.5029	0.4351	0.2217	0.0733*	
H772	0.4360	0.3306	0.1609	0.0714*	
H761	0.356 (6)	0.530 (5)	0.176 (4)	0.1016*	
H431	0.0955	0.2742	0.0092	0.0549*	
H432	0.0838	0.3678	0.0801	0.0550*	
H433	0.2032	0.3212	0.0690	0.0550*	

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0156 (2)	0.0107 (2)	0.0249 (2)	-0.00129 (16)	0.00273 (18)	0.00788 (17)
F2	0.0136 (11)	0.0119 (11)	0.0250 (13)	-0.0024 (9)	0.0031 (10)	0.0080 (10)
Mn3	0.0152 (2)	0.0111 (2)	0.0264 (2)	-0.00116 (16)	0.00304 (18)	0.00823 (18)
O4	0.0171 (10)	0.0166 (10)	0.0274 (12)	-0.0015 (8)	0.0010 (9)	0.0124 (9)
C5	0.0196 (14)	0.0118 (13)	0.0253 (16)	0.0003 (11)	0.0047 (12)	0.0073 (11)
C6	0.0184 (14)	0.0142 (13)	0.0258 (16)	-0.0015 (11)	0.0025 (12)	0.0076 (12)
S 7	0.0194 (4)	0.0131 (3)	0.0266 (4)	-0.0023 (3)	0.0034 (3)	0.0097 (3)
08	0.0228 (11)	0.0115 (10)	0.0279 (12)	-0.0026 (8)	0.0032 (9)	0.0092 (9)
09	0.0254 (12)	0.0159 (11)	0.0309 (13)	-0.0036 (9)	0.0044 (10)	0.0117 (9)
C10	0.0236 (16)	0.0159 (14)	0.0273 (17)	-0.0029 (12)	0.0030 (13)	0.0087 (12)
C11	0.0166 (14)	0.0145 (13)	0.0256 (16)	-0.0032 (11)	0.0038 (12)	0.0087 (12)
012	0.0215 (11)	0.0136 (10)	0.0280 (12)	0.0009 (8)	0.0076 (9)	0.0107 (9)
C13	0.0211 (15)	0.0150 (14)	0.0285 (17)	-0.0041 (11)	0.0042 (13)	0.0079 (12)
S14	0.0168 (3)	0.0131 (3)	0.0281 (4)	-0.0026 (3)	0.0046 (3)	0.0058 (3)
015	0.0178 (11)	0.0167 (10)	0.0312 (13)	-0.0020 (8)	0.0027 (9)	0.0062 (9)
016	0.0187 (11)	0.0191 (11)	0.0331 (13)	-0.0018 (9)	0.0067 (10)	0.0052 (10)
C17	0.0193 (14)	0.0114 (13)	0.0267 (16)	-0.0008 (11)	-0.0003 (12)	0.0066 (12)
C18	0.0189 (14)	0.0118 (13)	0.0251 (16)	0.0004 (11)	0.0024 (12)	0.0093 (11)
O19	0.0200 (11)	0.0117 (10)	0.0301 (12)	-0.0022 (8)	0.0061 (9)	0.0053 (9)
C20	0.0189 (14)	0.0139 (13)	0.0294 (17)	-0.0010 (11)	0.0011 (12)	0.0117 (12)
S21	0.0170 (3)	0.0109 (3)	0.0277 (4)	-0.0021 (3)	0.0025 (3)	0.0065 (3)
O22	0.0195 (11)	0.0113 (9)	0.0291 (12)	-0.0018 (8)	0.0026 (9)	0.0102 (9)
O23	0.0227 (11)	0.0107 (10)	0.0332 (13)	-0.0039 (8)	0.0034 (10)	0.0041 (9)
C24	0.0162 (14)	0.0142 (13)	0.0289 (17)	-0.0029 (11)	0.0009 (12)	0.0079 (12)
C25	0.0232 (16)	0.0146 (14)	0.0284 (17)	-0.0046 (12)	0.0016 (13)	0.0071 (12)
C26	0.0253 (16)	0.0167 (14)	0.0290 (17)	-0.0050 (12)	0.0007 (13)	0.0077 (13)
C27	0.0201 (15)	0.0191 (15)	0.0297 (17)	-0.0034 (12)	-0.0011 (13)	0.0118 (13)
C28	0.0189 (14)	0.0139 (13)	0.0271 (16)	-0.0030 (11)	0.0022 (12)	0.0095 (12)
C29	0.0165 (14)	0.0124 (13)	0.0270 (16)	-0.0033 (10)	0.0036 (12)	0.0091 (12)
O30	0.0167 (10)	0.0126 (10)	0.0258 (12)	-0.0015 (8)	-0.0018 (9)	0.0043 (8)
S31	0.0162 (3)	0.0146 (3)	0.0282 (4)	-0.0005 (3)	0.0023 (3)	0.0105 (3)
C32	0.0206 (15)	0.0112 (13)	0.0267 (16)	-0.0002 (11)	0.0052 (12)	0.0067 (11)
C33	0.0214 (15)	0.0155 (14)	0.0260 (16)	0.0011 (11)	0.0010 (12)	0.0065 (12)
C34	0.0233 (16)	0.0203 (15)	0.0275 (17)	-0.0031 (12)	0.0013 (13)	0.0102 (13)
C35	0.0252 (16)	0.0170 (14)	0.0274 (17)	-0.0031 (12)	0.0029 (13)	0.0109 (13)
C36	0.0331 (19)	0.035 (2)	0.033 (2)	-0.0102 (16)	-0.0029 (15)	0.0187 (16)

C37	0.047 (3)	0.066 (3)	0.037 (2)	-0.027 (2)	-0.0111 (19)	0.034 (2)
C38	0.042 (2)	0.048 (2)	0.0277 (19)	-0.0159 (19)	-0.0019 (17)	0.0126 (18)
C39	0.043 (2)	0.037 (2)	0.056 (3)	-0.0016 (18)	-0.013 (2)	0.029 (2)
O40	0.0168 (10)	0.0193 (11)	0.0320 (13)	0.0012 (8)	0.0064 (9)	0.0115 (9)
O41	0.0181 (11)	0.0221 (11)	0.0340 (13)	0.0004 (9)	0.0013 (10)	0.0119 (10)
C42	0.0342 (19)	0.0210 (16)	0.0276 (18)	-0.0061 (14)	-0.0009 (14)	0.0081 (14)
C43	0.047 (2)	0.034 (2)	0.0291 (19)	-0.0109 (17)	-0.0012 (17)	0.0148 (16)
C44	0.041 (2)	0.055 (3)	0.035 (2)	-0.022 (2)	-0.0078 (18)	0.015 (2)
C45	0.070 (3)	0.034 (2)	0.033 (2)	0.009 (2)	-0.007 (2)	0.0015 (18)
C46	0.0243 (16)	0.0166 (14)	0.0314 (18)	-0.0049 (12)	0.0054 (13)	0.0055 (13)
C47	0.0271 (17)	0.0216 (16)	0.0316 (18)	-0.0056 (13)	0.0068 (14)	0.0045 (14)
C48	0.0229 (15)	0.0185 (15)	0.0250 (16)	-0.0047 (12)	0.0048 (13)	0.0062 (12)
C49	0.050 (3)	0.038 (2)	0.043 (2)	-0.024 (2)	0.023 (2)	-0.0127 (19)
C50	0.066 (3)	0.042 (3)	0.059 (3)	-0.023 (2)	0.035 (3)	-0.020 (2)
C51	0.108 (5)	0.053 (3)	0.049 (3)	-0.039 (3)	0.045 (3)	-0.015 (2)
C52	0.052 (3)	0.042 (3)	0.122 (6)	-0.009 (2)	0.043 (4)	-0.023 (3)
C53	0.0243 (16)	0.0161 (14)	0.0323 (18)	-0.0024 (12)	0.0074 (13)	0.0057 (13)
C54	0.0279 (17)	0.0191 (15)	0.0304 (18)	-0.0062 (13)	0.0060 (14)	0.0081 (13)
C55	0.0246 (16)	0.0169 (14)	0.0293 (17)	-0.0045 (12)	0.0045 (13)	0.0110 (13)
C56	0.036 (2)	0.0231 (17)	0.0283 (18)	-0.0049 (14)	0.0080 (15)	0.0069 (14)
C57	0.058 (3)	0.037 (2)	0.030 (2)	0.006 (2)	0.0091 (19)	0.0127 (17)
C58	0.039 (2)	0.039 (2)	0.030 (2)	-0.0069 (17)	0.0095 (16)	0.0087 (16)
C59	0.049 (2)	0.032 (2)	0.032 (2)	-0.0112 (18)	0.0087 (18)	0.0014 (16)
K60	0.0359 (6)	0.0169 (5)	0.0383 (6)	-0.0022 (4)	0.0085 (5)	0.0084 (4)
O61	0.0286 (13)	0.0217 (12)	0.0410 (15)	-0.0020 (10)	0.0111 (11)	0.0075 (11)
C62	0.020 (3)	0.023 (3)	0.030 (3)	0.001 (2)	0.009 (2)	0.011 (2)
C63	0.052 (7)	0.025 (4)	0.046 (6)	-0.002 (4)	0.023 (5)	0.010 (4)
C64	0.039 (2)	0.0289 (19)	0.046 (2)	-0.0085 (16)	0.0123 (18)	0.0142 (17)
O65	0.026 (3)	0.017 (2)	0.026 (2)	-0.004 (2)	0.004 (2)	0.0064 (17)
O66	0.031 (4)	0.018 (3)	0.051 (4)	-0.010 (3)	0.018 (4)	0.007 (3)
C67	0.009 (5)	0.017 (5)	0.078 (8)	-0.001 (4)	0.003 (6)	0.021 (5)
C68	0.017 (4)	0.013 (3)	0.036 (4)	0.001 (3)	0.005 (4)	0.009 (2)
C69	0.015 (4)	0.016 (3)	0.043 (4)	-0.003 (3)	0.014 (4)	0.008 (3)
C70	0.013 (5)	0.012 (4)	0.070 (7)	0.005 (4)	0.019 (6)	0.004 (4)
071	0.037 (5)	0.019 (3)	0.050 (4)	-0.001 (4)	0.012 (4)	0.011 (3)
072	0.025 (3)	0.014 (2)	0.032 (3)	-0.008 (2)	0.003 (3)	0.0096 (18)
C73	0.038 (2)	0.0285 (19)	0.041 (2)	-0.0137 (16)	0.0066 (18)	0.0007 (16)
C74	0.027 (3)	0.016 (3)	0.023 (3)	0.004 (2)	0.003 (2)	0.002 (2)
C75	0.032 (5)	0.021 (4)	0.047 (5)	-0.003 (3)	0.014 (4)	0.004 (4)
O76	0.071 (3)	0.056(2)	0.073 (3)	0.005 (2)	0.009 (2)	0.010(2)

C77	0.035 (2)	0.045 (3)	0.072 (3)	-0.0073 (19)	0.011 (2)	0.022 (2)
O78	0.0399 (18)	0.0345 (17)	0.109 (3)	0.0090 (14)	0.016 (2)	0.0267 (19)
C79	0.070 (4)	0.046 (3)	0.132 (7)	0.026 (3)	0.024 (4)	0.030 (4)

Mn1—Mn3 ⁱ	3.1189 (7)	С45—Н453	0.969
Mn1—F2	2.2091 (4)	C46—C47	1.381 (5)
Mn1—Mn3	3.1057 (7)	C46—H461	0.932
Mn1—O4	2.239 (2)	C47—C48	1.391 (4)
Mn1—O8	2.191 (2)	C47—C49	1.540 (5)
Mn1-012	2.212 (2)	C48—H481	0.931
Mn1—019	2.223 (2)	C49—C50	1.513 (6)
Mn1—O22	2.189 (2)	C49—C51	1.506 (7)
Mn1—O30	2.221 (2)	C49—C52	1.5045 (19)
F2—Mn3 ⁱ	2.1924 (5)	С50—Н502	0.971
F2—Mn3	2.1924 (5)	С50—Н503	0.982
Mn3—O4 ⁱ	2.242 (2)	С50—Н501	0.972
Mn3—019 ⁱ	2.247 (2)	С51—Н513	0.961
Mn3—012	2.225 (2)	С51—Н511	0.962
Mn3—015	2.177 (2)	С51—Н512	0.969
Mn3—O30	2.222 (2)	С52—Н523	0.974
Mn3—O40	2.188 (2)	С52—Н522	0.973
O4—C5	1.305 (4)	С52—Н521	0.975
C5—C6	1.425 (4)	C53—C54	1.394 (5)
C5—C32	1.430 (4)	С53—Н531	0.936
C6—S7	1.763 (3)	C54—C55	1.380 (5)
C6—C35	1.389 (4)	C54—C56	1.532 (5)
S7—O8	1.446 (2)	С55—Н551	0.935
S7—O9	1.439 (2)	C56—C57	1.534 (5)
S7—C10	1.769 (3)	C56—C58	1.535 (5)
C10-C11	1.432 (4)	C56—C59	1.532 (5)
C10—C55	1.394 (5)	С57—Н572	0.964
C11—O12	1.297 (4)	С57—Н573	0.962
C11—C13	1.429 (5)	С57—Н571	0.967
C13—S14	1.762 (3)	С58—Н581	0.962
C13—C53	1.386 (5)	С58—Н582	0.964
S14—C17 ⁱ	1.763 (3)	С58—Н583	0.957
S14—O15	1.445 (3)	С59—Н592	0.963
S14—O16	1.436 (2)	С59—Н593	0.960
C17—C18	1.425 (4)	С59—Н591	0.970
C17—C48	1.392 (5)	O61—C62	1.468 (6)
C18—O19	1.303 (4)	O61—C74	1.369 (6)
C18—C20	1.428 (4)	O61—C63	1.345 (10)
C20—S21	1.768 (3)	O61—C75	1.483 (9)

Geometric parameters (Å, º) for (1)

C20—C46	1.388 (5)	C62—C64	1.411 (7)
S21—O22	1.449 (2)	С62—Н621	0.977
S21—O23	1.438 (2)	С62—Н622 0.975	
S21—C24	1.768 (3)	C63—C64	1.501 (10)
C24—C25	1.392 (5)	С63—Н631	0.975
C24—C29	1.424 (4)	С63—Н632	0.971
C25—C26	1.380 (5)	C64—O65	1.413 (7)
C25—H251	0.935	С64—Н642	0.982
C26—C27	1.391 (5)	C64—H641	0.976
C26—C42	1.531 (5)	C64—O66	1.352 (9)
C27—C28	1.383 (5)	С64—Н643	0.970
С27—Н271	0.931	С64—Н644	0.972
C28—C29	1.434 (4)	O65—C68	1.429 (10)
C28—S31	1.770 (3)	O66—C67	1.443 (15)
C29—O30	1.297 (4)	C67—C70 ⁱⁱ	1.51 (2)
S31—C32 ⁱ	1.768 (3)	С67—Н671	0.971
S31—O40	1.442 (3)	С67—Н672	0.970
S31—O41	1.439 (2)	C68—C69 ⁱⁱ	1.478 (14)
C32—C33	1.382 (4)	C68—H681	0.972
C33—C34	1.387 (4)	C68—H682	0.969
С33—Н331	0.935	C69—O72	1.441 (10)
C34—C35	1.393 (5)	С69—Н692	0.972
C34—C36	1.527 (5)	С69—Н691	0.969
С35—Н351	0.933	C70—O71	1.404 (15)
C36—C37	1.533 (5)	С70—Н701	0.971
C36—C38	1.538 (6)	С70—Н702	0.970
C36—C39	1.528 (6)	O71—C73	1.411 (10)
С37—Н371	0.964	O72—C73	1.370 (7)
С37—Н372	0.965	C73—C74	1.497 (7)
С37—Н373	0.967	С73—Н733	0.971
C38—H383	0.955	С73—Н731	0.981
C38—H382	0.966	C73—C75	1.338 (10)
C38—H381	0.963	С73—Н732	0.980
С39—Н391	0.966	С73—Н734	0.974
С39—Н392	0.961	C74—H741	0.973
С39—Н393	0.963	С74—Н742	0.974
C42—C43	1.537 (5)	С75—Н751	0.973
C42—C44	1.528 (6)	С75—Н752	0.973
C42—C45	1.525 (6)	O76—C77	1.424 (6)
C43—H431	0.974	O76—H761	0.844 (19)

С43—Н432	0.972	С77—Н773	0.960
С43—Н433	0.962	С77—Н771	0.964
С44—Н443	0.967	С77—Н772	1.028
C44—H441	0.965	O78—C79	1.374 (6)
С44—Н442	0.957	С79—Н791	0.966
С45—Н451	0.967	С79—Н793	0.966
С45—Н452	0.960	С79—Н792	0.962
Mn3 ⁱ —Mn1—F2	44.663 (12)	С36—С39—Н391	109.7
Mn3 ⁱ —Mn1—Mn3	89.565 (18)	С36—С39—Н392	109.6
F2—Mn1—Mn3	44.902 (12)	H391—C39—H392	110.0
Mn3 ⁱ —Mn1—O4	45.93 (6)	С36—С39—Н393	110.7
F2—Mn1—O4	74.29 (6)	H391—C39—H393	108.6
Mn3—Mn1—O4	108.26 (6)	H392—C39—H393	108.2
Mn3 ⁱ —Mn1—O8	125.99 (6)	Mn3—O40—S31	125.79 (14)
F2—Mn1—O8	144.00 (7)	C26—C42—C43	109.5 (3)
Mn3—Mn1—O8	124.10 (7)	C26—C42—C44	109.1 (3)
O4—Mn1—O8	81.56 (8)	C43—C42—C44	109.4 (3)
Mn3 ⁱ —Mn1—O12	108.94 (6)	C26—C42—C45	111.7 (3)
F2—Mn1—O12	74.85 (6)	C43—C42—C45	107.9 (4)
Mn3—Mn1—O12	45.75 (6)	C44—C42—C45	109.2 (4)
O4—Mn1—O12	92.26 (9)	С42—С43—Н431	110.3
O8—Mn1—O12	79.93 (8)	С42—С43—Н432	110.6
Mn3 ⁱ —Mn1—O19	46.08 (6)	H431—C43—H432	108.7
F2—Mn1—O19	74.32 (6)	C42—C43—H433	109.2
Mn3—Mn1—O19	108.19 (6)	H431—C43—H433	108.3
O4—Mn1—O19	80.37 (9)	H432—C43—H433	109.7
O8—Mn1—O19	127.66 (9)	C42—C44—H443	110.1
Mn3 ⁱ —Mn1—O22	126.51 (6)	C42—C44—H441	111.1
F2—Mn1—O22	144.37 (6)	H443—C44—H441	109.7
Mn3—Mn1—O22	123.98 (6)	C42—C44—H442	109.7
O4—Mn1—O22	127.73 (8)	H443—C44—H442	108.1
O8—Mn1—O22	71.58 (8)	H441—C44—H442	108.0
Mn3 ⁱ —Mn1—O30	109.20 (6)	C42—C45—H451	109.8
F2—Mn1—O30	74.98 (6)	С42—С45—Н452	110.2
Mn3—Mn1—O30	45.66 (6)	H451—C45—H452	109.4
O4—Mn1—O30	149.25 (8)	C42—C45—H453	109.8
O8—Mn1—O30	124.64 (8)	H451—C45—H453	109.1
O12—Mn1—O19	149.16 (8)	H452—C45—H453	108.6
O12—Mn1—O22	124.41 (9)	C20—C46—C47	122.4 (3)

O19—Mn1—O22	81.97 (8)	C20—C46—H461	117.6
O12—Mn1—O30	78.71 (9)	C47—C46—H461	120.0
O19—Mn1—O30	92.40 (9)	C46—C47—C48	116.1 (3)
O22—Mn1—O30	79.93 (8)	C46—C47—C49	124.4 (3)
Mn3 ⁱ —F2—Mn1	90.241 (18)	C48—C47—C49	119.4 (3)
Mn3 ⁱ —F2—Mn1 ⁱ	89.759 (18)	C17—C48—C47	122.3 (3)
Mn1—F2—Mn1 ⁱ	179.995	C17—C48—H481	118.6
Mn3 ⁱ —F2—Mn3	179.995	C47—C48—H481	119.1
Mn1—F2—Mn3	89.759 (18)	C47—C49—C50	111.5 (3)
Mn1 ⁱ —F2—Mn3	90.241 (18)	C47—C49—C51	109.5 (4)
F2—Mn3—O4 ⁱ	74.56 (6)	C50—C49—C51	111.1 (4)
F2-Mn3-019 ⁱ	74.17 (6)	C47—C49—C52	110.3 (4)
O4 ⁱ —Mn3—O19 ⁱ	79.80 (8)	C50—C49—C52	107.3 (4)
F2—Mn3—Mn1	45.339 (12)	C51—C49—C52	107.0 (5)
O4 ⁱ —Mn3—Mn1	108.88 (6)	С49—С50—Н502	108.2
O19 ⁱ —Mn3—Mn1	108.63 (6)	С49—С50—Н503	108.9
F2—Mn3—Mn1 ⁱ	45.096 (12)	H502—C50—H503	110.8
O4 ⁱ —Mn3—Mn1 ⁱ	45.86 (6)	C49—C50—H501	108.3
O19 ⁱ —Mn3—Mn1 ⁱ	45.44 (6)	H502—C50—H501	110.0
Mn1—Mn3—Mn1 ⁱ	90.435 (18)	H503—C50—H501	110.5
F2—Mn3—O12	74.92 (6)	C49—C51—H513	109.2
O4 ⁱ —Mn3—O12	149.47 (8)	C49—C51—H511	108.5
O19 ⁱ —Mn3—O12	92.82 (9)	H513—C51—H511	109.7
Mn1—Mn3—O12	45.41 (6)	C49—C51—H512	109.0
Mn1 ⁱ —Mn3—O12	109.47 (6)	H513—C51—H512	109.8
F2—Mn3—O15	143.93 (7)	H511—C51—H512	110.6
O4 ⁱ —Mn3—O15	127.23 (9)	С49—С52—Н523	110.2
O19 ⁱ —Mn3—O15	81.68 (9)	С49—С52—Н522	110.4
Mn1—Mn3—O15	123.85 (6)	H523—C52—H522	109.3
Mn1 ⁱ —Mn3—O15	125.57 (6)	C49—C52—H521	107.0
F2—Mn3—O30	75.29 (6)	H523—C52—H521	109.3
O4 ⁱ —Mn3—O30	92.95 (9)	H522—C52—H521	110.6
O19 ⁱ —Mn3—O30	149.45 (8)	C13—C53—C54	122.7 (3)
Mn1—Mn3—O30	45.64 (6)	C13—C53—H531	118.5
Mn1 ⁱ —Mn3—O30	109.84 (6)	С54—С53—Н531	118.8
F2—Mn3—O40	144.31 (7)	C53—C54—C55	115.9 (3)
O4 ⁱ —Mn3—O40	81.61 (8)	C53—C54—C56	120.0 (3)
O19 ⁱ —Mn3—O40	127.42 (9)	C55—C54—C56	124.1 (3)
Mn1—Mn3—O40	123.92 (6)	C10—C55—C54	122.3 (3)
Mn1 ⁱ —Mn3—O40	125.88 (6)	C10—C55—H551	118.1

O12—Mn3—O15	80.03 (9)	C54—C55—H551	119.6
O12—Mn3—O30	78.41 (9)	C54—C56—C57	111.8 (3)
O15—Mn3—O30	124.46 (8)	C54—C56—C58	109.3 (3)
O12—Mn3—O40	124.52 (8)	C57—C56—C58	108.7 (3)
O15—Mn3—O40	71.73 (9)	C54—C56—C59	109.1 (3)
O30—Mn3—O40	79.88 (9)	C57—C56—C59	107.8 (3)
Mn1—O4—Mn3 ⁱ	88.21 (8)	C58—C56—C59	110.3 (3)
Mn1—O4—C5	136.11 (19)	С56—С57—Н572	108.9
Mn3 ⁱ —O4—C5	135.5 (2)	С56—С57—Н573	109.5
O4—C5—C6	123.5 (3)	Н572—С57—Н573	109.5
O4—C5—C32	123.9 (3)	С56—С57—Н571	109.9
C6—C5—C32	112.7 (3)	Н572—С57—Н571	109.6
C5—C6—S7	122.2 (2)	Н573—С57—Н571	109.3
C5—C6—C35	123.2 (3)	C56—C58—H581	110.1
S7—C6—C35	114.4 (2)	С56—С58—Н582	109.9
C6—S7—O8	110.02 (15)	H581—C58—H582	109.7
C6—S7—O9	107.85 (15)	С56—С58—Н583	110.4
O8—S7—O9	116.36 (14)	H581—C58—H583	108.5
C6—S7—C10	105.07 (15)	Н582—С58—Н583	108.1
O8—S7—C10	109.71 (15)	С56—С59—Н592	110.2
O9—S7—C10	107.20 (15)	С56—С59—Н593	110.4
Mn1—O8—S7	125.28 (13)	Н592—С59—Н593	108.7
S7—C10—C11	123.1 (3)	С56—С59—Н591	109.6
S7—C10—C55	113.4 (2)	Н592—С59—Н591	108.7
C11—C10—C55	123.5 (3)	Н593—С59—Н591	109.2
C10—C11—O12	124.0 (3)	C62—O61—C74	113.3 (4)
C10—C11—C13	112.2 (3)	C63—O61—C75	114.4 (6)
O12—C11—C13	123.8 (3)	O61—C62—C64	110.2 (4)
Mn1—O12—Mn3	88.84 (8)	O61—C62—H621	109.3
Mn1—O12—C11	135.2 (2)	С64—С62—Н621	108.9
Mn3—O12—C11	134.7 (2)	O61—C62—H622	109.5
C11—C13—S14	123.5 (3)	С64—С62—Н622	109.4
C11—C13—C53	123.2 (3)	Н621—С62—Н622	109.7
S14—C13—C53	113.2 (3)	O61—C63—C64	112.0 (8)
C17 ⁱ —S14—C13	105.20 (15)	O61—C63—H631	108.1
C17 ⁱ —S14—O15	109.58 (15)	С64—С63—Н631	108.8
C13—S14—O15	109.64 (15)	O61—C63—H632	109.0
C17 ⁱ —S14—O16	107.34 (15)	С64—С63—Н632	109.2
C13—S14—O16	107.57 (15)	H631—C63—H632	109.6
O15—S14—O16	116.86 (15)	C62—C64—O65	113.8 (5)

Mn3—O15—S14	125.86 (14)	С62—С64—Н642	108.1
S14 ⁱ —C17—C18	122.8 (2)	O65—C64—H642	107.1
S14 ⁱ —C17—C48	113.9 (2)	С62—С64—Н641	109.5
C18—C17—C48	123.2 (3)	O65—C64—H641	108.8
C17—C18—O19	123.7 (3)	H642—C64—H641	109.3
C17—C18—C20	112.5 (3)	C63—C64—O66	111.3 (6)
O19—C18—C20	123.9 (3)	С63—С64—Н643	110.8
Mn1—O19—Mn3 ⁱ	88.47 (9)	O66—C64—H643	110.4
Mn1—O19—C18	135.98 (19)	С63—С64—Н644	107.9
Mn3 ⁱ —O19—C18	135.3 (2)	O66—C64—H644	107.4
C18—C20—S21	122.0 (3)	Н643—С64—Н644	108.8
C18—C20—C46	123.5 (3)	C64—O65—C68	115.5 (6)
S21—C20—C46	114.3 (2)	C64—O66—C67	112.2 (8)
C20—S21—O22	109.83 (15)	C70 ⁱⁱ —C67—O66	108.4 (10)
C20—S21—O23	107.95 (15)	C70 ⁱⁱ —C67—H671	109.7
O22—S21—O23	116.47 (14)	O66—C67—H671	109.7
C20—S21—C24	105.27 (14)	C70 ⁱⁱ —C67—H672	109.9
O22—S21—C24	109.53 (15)	О66—С67—Н672	110.0
O23—S21—C24	107.18 (15)	Н671—С67—Н672	109.2
Mn1—O22—S21	125.22 (12)	C69 ⁱⁱ —C68—O65	106.6 (7)
S21—C24—C25	113.5 (2)	C69 ⁱⁱ —C68—H681	109.6
S21—C24—C29	123.2 (2)	O65—C68—H681	110.7
C25—C24—C29	123.3 (3)	C69 ⁱⁱ —C68—H682	110.0
C24—C25—C26	123.0 (3)	O65—C68—H682	110.2
C24—C25—H251	117.9	H681—C68—H682	109.8
C26—C25—H251	119.1	C68 ⁱⁱ —C69—O72	109.0 (7)
C25—C26—C27	115.3 (3)	C68 ⁱⁱ —C69—H692	109.5
C25—C26—C42	124.1 (3)	О72—С69—Н692	108.7
C27—C26—C42	120.6 (3)	C68 ⁱⁱ —C69—H691	109.7
C26—C27—C28	122.9 (3)	O72—C69—H691	110.1
C26—C27—H271	118.1	H692—C69—H691	109.8
C28—C27—H271	119.0	C67 ⁱⁱ —C70—O71	106.3 (10)
C27—C28—C29	123.3 (3)	C67 ⁱⁱ —C70—H701	110.1
C27—C28—S31	113.3 (2)	O71—C70—H701	110.5
C29—C28—S31	123.4 (3)	C67 ⁱⁱ —C70—H702	110.7
C28—C29—C24	112.1 (3)	O71—C70—H702	110.2
C28—C29—O30	123.5 (3)	H701—C70—H702	109.0
C24—C29—O30	124.3 (3)	С70—О71—С73	117.6 (9)
Mn1—O30—Mn3	88.70 (8)	С69—О72—С73	112.9 (6)
Mn1—O30—C29	134.8 (2)	O72—C73—C74	111.2 (4)

Mn3-030-C29	135.40 (19)	072—С73—Н733	110.7
C28—S31—C32 ⁱ	105.11 (15)	С74—С73—Н733	110.5
C28—S31—O40	109.67 (15)	O72—C73—H731	107.7
C32 ⁱ —S31—O40	109.66 (15)	С74—С73—Н731	107.2
C28—S31—O41	107.56 (15)	H733—C73—H731	109.4
C32 ⁱ —S31—O41	107.07 (15)	O71—C73—C75	118.8 (6)
O40—S31—O41	117.08 (15)	071—С73—Н732	105.4
C5—C32—S31 ⁱ	122.5 (2)	С75—С73—Н732	105.9
C5—C32—C33	123.2 (3)	O71—C73—H734	108.4
S31 ⁱ —C32—C33	114.2 (2)	С75—С73—Н734	109.0
C32—C33—C34	122.9 (3)	Н732—С73—Н734	109.0
С32—С33—Н331	118.6	C73—C74—O61	110.8 (5)
С34—С33—Н331	118.5	С73—С74—Н741	108.3
C33—C34—C35	115.6 (3)	O61—C74—H741	109.2
C33—C34—C36	120.6 (3)	С73—С74—Н742	109.9
C35—C34—C36	123.8 (3)	O61—C74—H742	109.5
C34—C35—C6	122.5 (3)	H741—C74—H742	109.1
С34—С35—Н351	119.1	O61—C75—C73	113.5 (7)
С6—С35—Н351	118.3	O61—C75—H751	108.8
C34—C36—C37	111.4 (3)	С73—С75—Н751	108.9
C34—C36—C38	109.2 (3)	O61—C75—H752	108.5
C37—C36—C38	108.4 (4)	С73—С75—Н752	107.6
C34—C36—C39	109.3 (3)	H751—C75—H752	109.5
C37—C36—C39	108.9 (4)	С77—О76—Н761	104 (6)
C38—C36—C39	109.6 (3)	О76—С77—Н773	110.7
С36—С37—Н371	109.2	O76—C77—H771	110.1
С36—С37—Н372	109.7	Н773—С77—Н771	109.1
H371—C37—H372	109.2	О76—С77—Н772	108.1
С36—С37—Н373	110.9	Н773—С77—Н772	109.5
H371—C37—H373	109.7	Н771—С77—Н772	109.4
H372—C37—H373	108.2	O78—C79—H791	110.2
С36—С38—Н383	110.8	О78—С79—Н793	107.9
C36—C38—H382	109.6	H791—C79—H793	109.6
H383—C38—H382	108.2	O78—C79—H792	109.2
C36—C38—H381	109.9	H791—C79—H792	110.5
H383—C38—H381	109.0	Н793—С79—Н792	109.5
H382—C38—H381	109.3		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, º) for (1)

D—H···A	<i>D</i> —Н	H····A	D····A	D—H···A
С52— Н522···C63 ^{ііі}	0.97	2.50	3.195 (7)	129 (1)
C68— H681…O15 ^{iv}	0.97	2.54	3.365 (7)	142 (1)
C70— H701…O40 ^v	0.97	2.58	3.394 (7)	141 (1)
C73— H733····O41 ^v	0.97	2.46	3.249 (7)	138 (1)
C64— H643…O16 ^{iv}	0.97	2.40	3.207 (7)	140 (1)

Symmetry codes: (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*+1.

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

Photophysical characterisations

Fig. S1 Solution emission spectra of $[Mn_4(ThiaSO_2)_2F]K$ **1** after different times (0 - 900 s) of de-oxygenation by N₂ bubbling and upon photoexcitation at 28570 cm⁻¹ (350 nm).

Fig. S2 Solution emission spectra of $[Mn_4(ThiaSO_2)_2F][K(18C6)]$ **2** after different times (0 – 900 s) of deoxygenation by N₂ bubbling and upon photoexcitation at 28570 cm⁻¹ (350 nm).

Fig. S3 Solution emission spectra of $[Mn_4(ThiaSO_2)_2F]K$ **1** as function of time (0 - 3600 s) of re-oxygenation of the N₂ saturated solution by exposing them to air and upon photoexcitation at 28570 cm⁻¹ (350 nm).

Fig. S4 Solution emission spectra of $[Mn_4(ThiaSO_2)_2F][K(18C6)]$ **2** as function of time (0 – 3600 s) of reoxygenation of the N₂ saturated solution by exposing them to air and upon photoexcitation at 28570 cm⁻¹ (350 nm).

Fig. S5 Integrated solution luminescence intensities of $[Mn_4(ThiaSO_2)_2F]K$ **1** (black circles) and $[Mn_4(ThiaSO_2)_2F][K(18C6)]$ **2** (blue squares) after different times of de-oxygenation by N₂ bubbling (0 – 900 s, bottom axis) and re-oxygenation of the N₂ saturated solution by exposing them to air (0 – 3600 s, top axis) upon photoexcitation at 28570 cm⁻¹ (350 nm).