Supporting information

Aluminum complexes based on pyridine substituted alcohols: synthesis, structure, catalytic application in ROP

Marina M. Kireenko, Ekaterina A. Kuchuk, Kirill V. Zaitsev, Viktor A. Tafeenko, Yuri F. Oprunenko, Andrei V. Churakov, Elmira Kh. Lermontova, Galina S. Zaitseva and Sergey S. Karlov

Chemistry Department, Moscow State University, B-234 Leninskie Gory, 119991 Moscow, Russia
Institute of General and Inorganic Chemistry, Russian Acad. Sci., Leninskii pr., 31, 119991 Moscow, Russia

E-mail: zaitsev@org.chem.msu.ru

Table of Contents

Fig. S1 1H NMR spectrum for 3a (CDCl$_3$, rt) S3
Fig. S2 1H NMR spectrum for 3a (CDCl$_3$+ 20 % DMSO-d6, rt) S3
Fig. S3 DOSY NMR spectrum for 3a and calculation of M$_w$ S4
Fig. S4 Molecular structure of complex 2c S6
Fig. S5. MALDI-TOF mass spectrum of a PLA sample prepared with 2a S6
Fig. S6. 1H NMR spectra (CDCl$_3$) for BnO-PLLA, prepared with 2a (75 % conversion) S7
Fig. S7. 1H NMR spectra (CDCl$_3$) for MeO-PLLA, prepared with 2c (100 % conversion) S8
Fig. S8. Homodecoupled 1H NMR spectra (CDCl$_3$) for BnO-PLLA S8
Fig. S9. ln([LA]$_0$/[LA]) versus time plot for L-lactide polymerization with 2a-4a S9
Fig. S10. M$_n$ versus conversion plot for L-lactide polymerization with 3a S9
Fig. S11. Ln([M]₀/[M]) vs. time plots for the polymerization of L-lactide in the presence of catalytic complex 4a

Fig. S12. ¹H NMR spectrum (CDCl₃, rt) for PLLA (the sample contains the polymer, [(3)(PLLA)], with ligand fragment)

Figure S13. ¹H NMR spectrum (CDCl₃, rt) of complex 2a

Figure S14. ¹³C NMR spectrum (CDCl₃, rt) of complex 2a

Figure S15. ¹H NMR spectrum (CDCl₃, rt) of complex 3a

Figure S16. ¹³C NMR spectrum (CDCl₃, rt) of complex 3a

Figure S17. ¹H NMR spectrum (CDCl₃, rt) of complex 4a

Figure S18. ¹³C NMR spectrum (CDCl₃, rt) of complex 4a

Figure S19. ¹³C NMR spectrum (CDCl₃, rt) of complex 3b

Figure S20. ¹³C NMR spectrum (CDCl₃, rt) of complex 3b

Figure S21. ¹H NMR spectrum (CDCl₃, rt) of complex 4b

Figure S22. ¹³C NMR spectrum (CDCl₃, rt) of complex 4b

Figure S23. ¹H NMR spectrum (CDCl₃, rt) of complex 2c

Figure S24. ¹³C NMR spectrum (CDCl₃, rt) of complex 2c

Figure S25. ¹H NMR spectrum (CDCl₃, rt) of complex 3c

Figure S26. ¹³C NMR spectrum (CDCl₃, rt) of complex 3c

Figure S27. ¹H NMR spectrum (CDCl₃, rt) of complex 4c

Figure S28. ¹H NMR spectrum (C₆D₆, rt) of complex 2d

Figure S29. ¹³C NMR spectrum (C₆D₆, rt) of complex 2d
Fig. S1 1H NMR spectrum for 3a (CDCl$_3$, rt).

Fig. S2 1H NMR spectrum for 3a (CDCl$_3$+ 20 % DMSO-d$_6$, rt).
Fig. S3 DOSY NMR spectrum for 3a (600 MHz, DMSO-d6, room temperature; the admixture of toluene is present).

The formula of MW calculation [Angew. Chem., Int. Ed. 2013, 52, 3199 – 3202]

\[D = \frac{k_B T (\frac{3\alpha}{2} + \frac{1}{1+\alpha})}{6\pi\eta \sqrt{\frac{3MW}{4\pi\rho_{eff} N_A}}} \], where

\[\alpha = 3\sqrt{\frac{MW_S}{MW}} \]

MW_S – molecular weight of the solvent

MW – molecular weight of the solute
\(\rho_{\text{eff}} \) - the effective density of a small molecule

\(\eta \) - viscosity

\(N_A \) - the Avogadro number

\(k_B \) - Boltzmann constant

\(D \) – diffusion coefficient

\(T \) - temperature

Using known calculation algorithm the molecular weights of two particles was established:

\(M_1 = 820 \text{ g/mol, } D = 1.74 \times 10^{-10} \text{ m}^2/\text{s (M}_1\text{ (theor)} = 774.9), \) what corresponds to dimeric (3a)₂;

\(M_2 = 497.1 \text{ g/mol, } D = 2.19 \times 10^{-10} \text{ m}^2/\text{s (M}_1\text{ (theor)} = 465.6), \) what corresponds to adduct of monomer with DMSO.
Fig. S4 Molecular structure of complex 2c. Hydrogen atoms are omitted for clarity.

Fig. S5. MALDI-TOF mass spectrum of a PLA sample prepared with 2a (Table 2, entry 1) (solvent THF, HABA matrix, 2,5-dihydroxybenzoic acid).
Fig. S6. 1H NMR spectra (CDCl$_3$) for BnO-PLLA, prepared with 2a (75 % conversion).
Fig. S7. 1H NMR spectra (CDCl$_3$) for MeO-PLLA, prepared with 2c (100 % conversion).

Fig. S8. Homodecoupled 1H NMR spectra (CDCl$_3$) for BnO-PLLA.
Fig. S9. $\ln([LA]/[LA])$ versus time plot for L-lactide polymerization with 2a-4a.

Fig. S10. M_n versus conversion plot for L-lactide polymerization with 3a.
Fig. S11. Ln([M]_0/[M]) vs. time plots for the polymerization of L-lactide in the presence of catalytic complex 4a (100:1:1) at 80 °C; [LA]/[initiator]= 100.

Fig. S12. ^1^H NMR spectrum (CDCl₃, rt) for PLLA (the sample contains the polymer, [(3)(PLLA)], with ligand fragment).
Figure S13. 1H NMR spectrum (CDCl$_3$, rt) of complex 2a.

Figure S14. 13C NMR spectrum (CDCl$_3$, rt) of complex 2a.
Figure S15. 1H NMR spectrum (CDCl$_3$, rt) of complex 3a.

Figure S16. 13C NMR spectrum (CDCl$_3$, rt) of complex 3a.
Figure S17. 1H NMR spectrum (CDCl$_3$, rt) of complex 4a.

Figure S18. 13C NMR spectrum (CDCl$_3$, rt) of complex 4a.
Figure S19. 13C NMR spectrum (CDCl$_3$, rt) of complex 3b.

Figure S20. 13C NMR spectrum (CDCl$_3$, rt) of complex 3b.
Figure S21. 1H NMR spectrum (CDCl$_3$, rt) of complex 4b.

Figure S22. 13C NMR spectrum (CDCl$_3$, rt) of complex 4b.
Figure S23. 1H NMR spectrum (CDCl$_3$, rt) of complex 2c.

Figure S24. 13C NMR spectrum (CDCl$_3$, rt) of complex 2c.
Figure S25. 1H NMR spectrum (CDCl$_3$, rt) of complex 3c.

Figure S26. 13C NMR spectrum (CDCl$_3$, rt) of complex 3c.
Figure S27. 1H NMR spectrum (CDCl$_3$, rt) of complex 4c.

Figure S28. 1H NMR spectrum (C$_6$D$_6$, rt) of complex 2d.
Figure S29. 13C NMR spectrum (C$_6$D$_6$, rt) of complex 2d.