Supporting Information

Inherently strong B–N bonds in pyridine-based intramolecular Lewis pairs

Leif A. Körte, Robin Warner, Yury V. Vishnevskiy, Beate Neumann, Hans-Georg Stammler and Norbert W. Mitzel*

Bielefeld University, Faculty of Chemistry, Chair of Inorganic and Structural Chemistry, Centre for Molecular Materials CM², Universitätsstraße 25, 33615 Bielefeld, Germany.
E-mail: mitzel@uni-bielefeld.de

Additional spectra of 2-[[bis(pentafluorophenyl)boryl]methyl]pyridine (5)

Figure 1: 1H-NMR spectrum of compound 5 measured in benzene-d$_6$ (500 MHz) at ambient temperature. Additional peaks arise due to trace impurities with n-hexane and silicone-grease from the reaction and purification method.

Figure 2: 13C-NMR spectrum of compound 5 measured in benzene-d$_6$ (500 MHz) at ambient temperature. Additional peaks arise due to trace impurities with n-hexane and silicone-grease from the reaction and purification method.
Additional spectra of 2-{{bis(pentafluorophenyl)boryl}methyl}-4-dimethylamino-6-methylpyridine (9)

Figure 3: 1H-NMR spectrum of compound 9 measured in benzene-d6 (500 MHz) at ambient temperature.

Figure 4: 13C-NMR spectrum of compound 9 measured in benzene-d6 (500 MHz) at ambient temperature.
Figure 5: 1H-NMR spectrum of compound 12 measured in benzene-d$_6$ (500 MHz) at ambient temperature. Additional peaks arise due to trace impurities with n-hexane, toluene and silicone-grease from the reaction and purification method.

Figure 6: 13C-NMR spectrum of compound 12 measured in benzene-d$_6$ (500 MHz) at ambient temperature. Additional peaks arise due to trace impurities with n-hexane, toluene and silicone-grease from the reaction and purification method.