Supporting Information

Efficient one-pot synthesis of trans-Pt(II)(salicylaldimine)(4-picoline)Cl complexes: Effective agents for enhanced expression of p53 tumor suppressor genes

Faiz-Ur-Rahman, Amjad Ali, Rong Guo, Wei-Kun Wang, Hui Wang, Zhan-Ting Li, Yuejian Lin, and Dan-Wei Zhang

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
Unit of GIGA Signal Transduction, GIGA-R, University of Liege, Tour GIGA +2 B34, Avenue de l'hôpital, 1, CHU SART-Tilman 4000 Liege, Belgium

*E-mail: zhangdw@fudan.edu.cn (D.-W. Zhang), wanghui@fudan.edu.cn (H. Wang)
Tel.: +86 21 65643576

Contents

Synthesis and characterization of ligands L1‒8 ... 2
1H, 13C and 19F NMR Spectra of Ligands .. 5
1H, 13C and 19F NMR Spectra of platinum complexes ... 16
Mass Spectra of all platinum complexes ... 27
Stability study .. 31
Single crystal structure study and refinement data of C1, C2 and C3 33
Packing plot of C1 .. 34
Packing plot of C2 .. 34
Packing plot of C3 .. 35
Synthesis and characterization of ligands L1–8

General procedure for the synthesis of ligands L1–8

1 mmol of amine/aniline, particular salicylaldehyde and anhyd. Na₂SO₄ (200 mg) were taken in 20 mL of CH₂Cl₂. The mixture was stirred under reflux for 4h (checked by TLC). On completion it is cooled to room temperature and filtered to remove undissolved solid which is further washed with CH₂Cl₂. The filtrate was vacuum evaporated to get L1 to L8 which was dried and used in the next step without further purification.

Characterization of ligand L1.

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 13.45 (s, 1H), 8.26 (s, 1H), 7.11 (d, J = 8.3 Hz, 1H), 7.05 (s, 1H), 6.87 (d, J = 8.3 Hz, 1H), 3.41 (d, J = 7.5 Hz, 2H), 2.29 (s, 3H), 2.02–1.92 (m, 1H), 0.98 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 159.1, 132.9, 131.2, 127.4, 118.5, 116.8, 67.6, 29.6, 20.5, 20.4.

Characterization of ligand L2.

Orange solid, ¹H NMR (400 MHz, CDCl₃) δ 13.01 (s, 1H), 8.56 (s, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 7.6 Hz, 3H), 7.18 (d, J = 7.0 Hz, 2H), 6.93 (d, J = 8.6 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 159.0, 148.7, 134.1, 132.3, 129.4, 128.2, 126.8, 121.2, 118.9, 117.0, 20.4.
Light yellow solid, 1H NMR (400 MHz, CDCl$_3$) δ 12.85 (s, 1H), 8.54 (s, 1H), 7.28–7.22 (m, 2H), 7.22–7.16 (m, 2H), 7.15–7.07 (m, 2H), 6.94 (d, $J = 8.1$ Hz, 1H), 2.32 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ –116.17. 13C NMR (100 MHz, CDCl$_3$) δ 162.5, 161.6 (d, $J_{C-F} = 247.45$ Hz), 158.9, 144.8, 134.2, 132.3, 128.2, 122.58 (d, $J_{C-F} = 8.3$ Hz), 118.7, 117.0, 116.2 (d, $J_{C-F} = 22.7$ Hz), 20.4.

Characterization of ligand L4.1

Light yellow solid, 1H NMR (400 MHz, CDCl$_3$) δ 13.27 (s, 1H), 8.64 (s, 1H), 7.48–7.36 (m, 4H), 7.34–7.27 (m, 3H), 7.04 (d, $J = 8.1$ Hz, 1H), 6.96 (t, $J = 7.5$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 162.7, 161.2, 148.5, 133.2, 132.3, 129.4, 126.9, 121.2, 119.2, 119.1, 117.3.

Characterization of ligand L5.2

Light yellow solid, 1H NMR (400 MHz, CDCl$_3$) δ 13.10 (s, 1H), 8.57 (s, 1H), 7.42–7.33 (m, 2H), 7.26 (dd, $J = 5.1$, 3.0 Hz, 1H), 7.23 (dd, $J = 5.0$, 3.0 Hz, 1H), 7.15–7.06 (m, 2H), 7.02 (d, $J = 8.8$ Hz, 1H), 6.94 (t, $J = 7.5$ Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ –115.93. 13C NMR (100 MHz, CDCl$_3$) δ 162.5, 161.7 (d, $J_{C-F} = 247.45$ Hz), 161.1, 160.4, 144.7, 133.2, 132.3, 122.6 (d, $J_{C-F} = 8.3$ Hz), 119.2, 117.3, 116.2 (d, $J_{C-F} = 22.7$ Hz).

Characterization of ligand L6.

Yellow liquid, 1H NMR (400 MHz, CDCl$_3$) δ 13.41 (s, 1H), 8.25 (s, 1H), 7.06–6.98 (m, 1H), 6.95 (dd, $J = 8.4$, 3.1 Hz, 1H), 6.90 (dd, $J = 9.0$, 4.5 Hz, 1H), 3.43 (d, $J = 6.5$ Hz, 2H), 2.03–1.93 (m, 1H), 0.98 (d, $J = 6.7$ Hz, 6H). 19F NMR (376 MHz, CDCl$_3$) δ –
126.64. 13C NMR (100 MHz, CDCl$_3$) δ 163.7, 157.4, 155.3 (d, $J_{C-F} = 236.2$ Hz), 119.0 (d, $J_{C-F} = 23.2$ Hz), 118.5 (d, $J_{C-F} = 7.2$ Hz), 118.0 (d, $J_{C-F} = 7.4$ Hz), 116.2 (d, $J_{C-F} = 23.1$ Hz), 67.6, 29.6, 20.4.

Characterization of ligand L7.

![L7](image)

Orange solid, 1H NMR (400 MHz, CDCl$_3$) δ 13.02 (s, 1H), 8.56 (s, 1H), 7.49–7.38 (m, 2H), 7.36–7.26 (m, 3H), 7.16–7.05 (m, 2H), 7.02–6.94 (m, 1H). 19F NMR (376 MHz, CDCl$_3$) δ −125.82. 13C NMR (100 MHz, CDCl$_3$) δ 161.5, 157.3, 155.6 (d, $J_{C-F} = 237.5$ Hz), 148.1, 129.5, 127.3, 121.2, 120.3 (d, $J_{C-F} = 23.3$ Hz), 118.9 (d, $J_{C-F} = 6.8$ Hz), 118.4 (d, $J_{C-F} = 7.3$ Hz), 117.1 (d, $J_{C-F} = 23.2$ Hz).

Characterization of ligand L8.3

![L8](image)

Orange solid, 1H NMR (400 MHz, CDCl$_3$) δ 12.87 (s, 1H), 8.53 (s, 1H), 7.33–7.22 (m, 2H), 7.18–7.05 (m, 4H), 6.98 (dd, $J = 8.7, 4.5$ Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ −115.27, −125.68. 13C NMR (100 MHz, CDCl$_3$) δ 161.9 (d, $J_{C-F} = 248.5$ Hz), 161.2, 157.2, 155.6 (d, $J_{C-F} = 237.4$ Hz), 144.3, 122.7 (d, $J_{C-F} = 8.4$ Hz), 120.35 (d, $J_{C-F} = 23.3$ Hz), 118.8 (d, $J_{C-F} = 5.7$ Hz), 118.4 (d, $J_{C-F} = 7.4$ Hz), 117.1 (d, $J_{C-F} = 23.1$ Hz), 116.4 (d, $J_{C-F} = 22.8$ Hz).

References:

^{1}H, ^{13}C and ^{19}F NMR Spectra of Ligands

Fig. S1 ^{1}H NMR of L_1 in CDCl$_3$ at 25°C

Fig. S2 ^{13}C NMR of L_1 in CDCl$_3$ at 25°C
Fig. S3 1H NMR of L2 in CDCl$_3$ at 25°C

Fig. S4 13C NMR of L2 in CDCl$_3$ at 25°C
Fig. S5 1H NMR of L3 in CDCl$_3$ at 25°C

Fig. S6 13C NMR of L3 in CDCl$_3$ at 25°C
Fig. S7 19F NMR of L3 in CDCl$_3$ at 25°C

Fig. S8 1H NMR of L4 in CDCl$_3$ at 25°C
Fig. S9 13C NMR of L4 in CDCl$_3$ at 25°C

Fig. S10 1H NMR of L5 in CDCl$_3$ at 25°C
Fig. S11 13C NMR of L5 in CDCl$_3$ at 25°C

Fig. S12 19F NMR of L5 in CDCl$_3$ at 25°C
Fig. S13 1H NMR of L6 in CDCl$_3$ at 25°C

Fig. S14 13C NMR of L6 in CDCl$_3$ at 25°C
Fig. S15 19F NMR of L6 in CDCl$_3$ at 25°C

Fig. S16 1H NMR of L7 in CDCl$_3$ at 25°C
Fig. S17 13C NMR of L7 in CDCl$_3$ at 25°C

Fig. S18 19F NMR of L7 in CDCl$_3$ at 25°C
Fig. S19 1H NMR of L8 in CDCl$_3$ at 25°C

Fig. S20 13C NMR of L8 in CDCl$_3$ at 25°C
Fig. S21 19F NMR of L8 in CDCl$_3$ at 25°C
1H, 13C and 19F NMR Spectra of platinum complexes

Fig. S22 1H NMR of C1 in CDCl$_3$ at 25°C

Fig. S23 13C NMR of C1 in CDCl$_3$ at 25°C
Fig. S24 1H NMR of C2 in CDCl$_3$ at 25°C

Fig. S25 13C NMR of C2 in CDCl$_3$ at 25°C
Fig. S26 1H NMR of C3 in CDCl$_3$ at 25°C

Fig. S27 13C NMR of C3 in CDCl$_3$ at 25°C
Fig. S28 19F NMR of C3 in CDCl$_3$ at 25°C

Fig. S29 1H NMR of C4 in CDCl$_3$ at 25°C
Fig. S30 13C NMR of C4 in CDCl$_3$ at 25°C

Fig. S31 1H NMR of C5 in CDCl$_3$ at 25°C
Fig. S32 13C NMR of C5 in CDCl$_3$ at 25°C

Fig. S33 19F NMR of C5 in CDCl$_3$ at 25°C
Fig. S34 1H NMR of C6 in CDCl$_3$ at 25°C

Fig. S35 13C NMR of C6 in CDCl$_3$ at 25°C
Fig. S36 19F NMR of C6 in CDCl$_3$ at 25°C

Fig. S37 1H NMR of C7 in CDCl$_3$ at 25°C
Fig. S38 13C NMR of C7 in CDCl$_3$ at 25°C

Fig. S39 19F NMR of C7 in CDCl$_3$ at 25°C
Fig. S40 1H NMR of C8 in CDCl$_3$ at 25°C

Fig. S41 13C NMR of C8 in CDCl$_3$ at 25°C
Fig. S42 19F NMR of C8 in CDCl$_3$ at 25°C
Mass Spectra of all platinum complexes

Fig. S43 Mass Spectrum of C1

Fig. S44 Mass Spectrum of C2
Fig. S45 Mass Spectrum of C3

Fig. S46 Mass Spectrum of C4
Fig. S47 Mass Spectrum of C5

Fig. S48 Mass Spectrum of C6
Fig. S49 Mass Spectrum of C7

Fig. S50 Mass Spectrum of C8
Stability study

Stability of metal complex studied for cytotoxic analysis is always important. Therefore we performed stability analysis experiments for C2, C3 and C5 as model complexes using 1H NMR spectroscopy in 10–15% D$_2$O–DMSO-d$_6$ mixture under room temperature at 0, 24, 48, and 72 h. No changes were observed in 1H chemical shifts and also in peak number (Fig. S51 for C2, Fig. S52 for C3 and Fig. S53 for C5 below). It is concluded that C2, C3 and C5 are highly stable under these conditions.

Fig. S51 Stability analysis of C2 using 1H NMR, taken in 15% D$_2$O–DMSO-d$_6$ at room temperature during (bottom to top) 0, 24, 48 and 72 h.
Fig. S52 Stability analysis of C3 using 1H NMR, taken in 10% D$_2$O–DMSO-d_6 at room temperature during (bottom to top) 0, 24, 48 and 72 h.

Fig. S53 Stability analysis of C5 using 1H NMR, taken in 10% D$_2$O–DMSO-d_6 at room temperature during (bottom to top) 0, 24, 48 and 72 h.
Single crystal structure study and refinement data of C1, C2 and C3

Table S1 data and structure refinement of the complex C1, C2 and C3

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14H18ClN2OPt</td>
<td>C20H16ClN2OPt</td>
<td>C20H16ClN2OPt</td>
<td></td>
</tr>
<tr>
<td>Formula weight</td>
<td>513.92</td>
<td>533.91</td>
<td>551.90</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
<td>233(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
<td>P 21/c</td>
<td>P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.219(7)</td>
<td>13.766(2)</td>
<td>7.961(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>11.945(6)</td>
<td>12.267(2)</td>
<td>10.420(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.835(6)</td>
<td>11.094(2)</td>
<td>12.674(5)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
<td>84.941(5)</td>
</tr>
<tr>
<td>β (°)</td>
<td>93.962(6)</td>
<td>93.872</td>
<td>74.687(5)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>90</td>
<td>72.304(5)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>1836.0(16)</td>
<td>1869.1(6)</td>
<td>966.0(7)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.859</td>
<td>1.897</td>
<td>1.897</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>7.793</td>
<td>7.660</td>
<td>7.421</td>
</tr>
<tr>
<td>F(000)</td>
<td>992</td>
<td>1040</td>
<td>528</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.600 × 0.500 × 0.200</td>
<td>0.700 × 0.200 × 0.140</td>
<td>0.200 × 0.100 × 0.050</td>
</tr>
<tr>
<td>Theta range for data collection (°)</td>
<td>2.229 to 26.000</td>
<td>1.483 to 27.397</td>
<td>1.666 to 25.006</td>
</tr>
<tr>
<td>Index ranges</td>
<td>–17 ≤ h ≤ 17, –17 ≤ h ≤ 17, –17 ≤ h ≤ 17</td>
<td>–12 ≤ k ≤ 14, –12 ≤ k ≤ 12, –12 ≤ k ≤ 14</td>
<td>–14 ≤ l ≤ 14, –14 ≤ l ≤ 14, –14 ≤ l ≤ 14</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8007</td>
<td>12631</td>
<td>4009</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3582 [R(int) = 0.1028]</td>
<td>4228 [R(int) = 0.0493]</td>
<td>3327 [R(int) = 0.0484]</td>
</tr>
<tr>
<td>Completeness to theta = 25.242° (%)</td>
<td>99.4</td>
<td>99.5</td>
<td>95.3</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
<td>Semi-empirical from equivalents</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.000 and 0.314</td>
<td>0.746 and 0.252</td>
<td>1.000 and -0.099</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
<td>Full-matrix least-squares on F²</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3582 / 0 / 212</td>
<td>4228 / 0 / 228</td>
<td>3327 / 12 / 237</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.041</td>
<td>1.054</td>
<td>1.094</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R1[a] = 0.0592, wR2[b] = 0.1491</td>
<td>R1[a] = 0.0444, wR2[b] = 0.1320</td>
<td>R1[a] = 0.0580, wR2[b] = 0.1699</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1[a] = 0.0674, wR2[b] = 0.1533</td>
<td>R1[a] = 0.0523, wR2[b] = 0.1385</td>
<td>R1[a] = 0.0655, wR2[b] = 0.1736</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>4.420 and –2.775 e.Å⁻³</td>
<td>1.763 and –2.859 e.Å⁻³</td>
<td>2.342 and –3.095 e.Å⁻³</td>
</tr>
</tbody>
</table>

[a] R1 = Σ all reflections | F0 - Fc | Σ all reflections | F0 | [b] wR2 = [Σ w(F0² - Fc²)² / Σ w(F0²)²]₁/².
Packing plot of C1

Fig. S54 1D array made by intermolecular bond between chloride attached to Pt center and H of the next molecule in C1

Packing plot of C2

Fig. S55 3D arrangement of molecules in crystal packing; made by intermolecular bonds between chloride attached to Pt center and H of the next molecule (blue bonds) in C2
Packing plot of C3

Fig. S56 3D arrangement of molecules in crystal packing; made by intermolecular bonds between chloride attached to Pt center and H of the neighbor molecule in C3