Supporting Information for:

Extraordinary Aluminum Coordination in a Novel Homometallic Double Complex Salt

Toshihiko Mandaia,*, Hyuma Masu,b and Patrik Johanssona,c

aDepartment of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

bCenter for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

cCurrent position: Visiting professor at LRCS/CNRS UMR7314, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France

CORRESPONDING AUTHOR FOOTNOTES

Telephone: +46-31-772-3310, E-mail: mandi@chalmers.se

The experimental details are herein described. The thermal ellipsoid model of the crystal of DCS 1 and atom assignment of the G3 molecule co-crystallized with the ionic species in DCS 1 are shown in Figures S1 and S2, respectively. Raman spectra of DCS 1, Al[TfO]$_3$, and G3 are also included, Figure S3. The full publication list of reference [14] in the manuscript is provided.
Experimental details

Materials and synthesis of DCS 1

Al[TfO]$_3$ (99.9% trace metal basis) and triglyme (G3; 99%) were purchased from Sigma-Aldrich. Al[TfO]$_3$ was dried under high vacuum at 120 ºC for 48 h, and G3 was dried over molecular sieves 4A for several days, then stored in an Al-filled glovebox prior to use. The single crystals of DCS 1 grew as colorless crystals from the G3-Al[TfO]$_3$ solution mixed in 4:1 molar ratio (2.93 g, 16.4 mmol for G3; 1.95 g, 4.11 mmol for Al[TfO]$_3$) upon storing in an Ar filled glovebox (≤ 1 ppm O$_2$ and ≤ 0.5 ppm H$_2$O) for less than one month at ambient temperature. The crystals were collected by filtration and dried under high vacuum for a week at 45 ºC, given pure DCS 1 (0.41 g, 16.2%). Elemental analysis: calculated (%) for C$_{28}$H$_{56}$Al$_2$F$_{12}$O$_{26}$S$_4$: C 27.56, H 4.59, Al 4.43, F 18.70, S 10.50; found: C 27.31, H 4.62, Al 4.14, F 18.50, S 10.39.

\[
2\text{Al[TfO]}_3 + 3\text{G3} + 2\text{OH}^- \rightarrow \text{[Al(G3)$_2$]}^{3+} \cdot \text{[Al(TfO)$_4$(OH)$_2$]}^{3-} \cdot \text{G3} + 2\text{[TfO]}^-
\]

Scheme to give the DCS 1 compound.

X-ray crystallography

DCS 1 coated with vacuum grease to avoid adsorbing moisture was mounted on a glass pin and cooled to −50 ºC using a steady flow of nitrogen gas stream. All measurements were performed on a Bruker Smart ApexII Ultra equipped with a CCD area detector using monochromated Cu Kα radiation (λ = 1.54178 Å). Empirical absorption correction was applied using a multiscan averaging of symmetry equivalent data on SADABS program. The structure was solved by the direct method SHELXS-97, and refined full-matrix least-squares in the anisotropic approximation for non-hydrogen atoms using the SHELXL-2013. All hydrogen atoms were placed in geometrically ideal position and refined using a riding model. CCDC deposited number: 1053538.

Raman spectroscopy

Raman spectra of DCS 1, Al[TfO]$_3$, and G3 were collected with a Bruker MultiRam FT-Raman spectrometer equipped with a liquid nitrogen cooled germanium detector, and 1064 nm line of an
Nd:YAG-excited laser with a resolution of 2 cm\(^{-1}\). The spectra were recorded in the range of 100–3600 cm\(^{-1}\) at ambient temperature, employing a laser power of 400 mW and 500 scans. The samples were sealed in a vial under an Ar atmosphere in the glovebox and transferred to the Raman set-up without exposure to air. To analyze the representative Raman bands, suitable spectral ranges were adopted in this study: 900–780 and 1100–1000 cm\(^{-1}\) for glyme and [TfO]\(^{-}\) anion, respectively.

Calculations

All DFT calculations were made in vacuum employing the M06 functional\(^3\) and the 6-311+G* basis set. The geometries of the building blocks ([TfO]\(^{-}\), G3, OH\(^{-}\)) were all relaxed, while [Al(G3)\(_2\)]\(^{3+}\) and [Al(TfO)\(_4\)(OH)\(_2\)]\(^{3-}\) geometries were taken from the crystal structure determination. As an additional measure the energies of the complexes were calculated with the central Al\(^{3+}\) ion removed. All interaction energies were subsequently calculated as the electronic energy differences upon complex formation; \(\Delta E_{\text{int}} = \Delta E_{\text{complex}} - \sum (\Delta E_{\text{building blocks}})\). All calculations were made using Gaussian09 RevB.01.\(^4\)

References

Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O¨. Farkas, J. B.

Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision B.01.
Figure S1. Thermal ellipsoid model of the crystal of DCS 1. Disordered structures (a G3 molecule and hydrogen atoms of hydroxy groups) are indicated in the model. The ellipsoids of non-hydrogen atoms are drawn at the 50 % probability level, while isotropic hydrogen atoms are represented by spheres of arbitrary size.

Figure S2. Atom assignment of the G3 molecule co-crystallized with the ionic species in DCS 1. Four different arrangements are disordered. One example was extracted and colorized as pink. H atoms on each carbon atom are omitted for clarity. Gray, C; red, O.
Figure S3. Raman spectra for DCS 1, Al[TfO]$_3$, and G3 in the spectral ranges (a) 900–780 cm$^{-1}$ and (b) 1100–1000 cm$^{-1}$.
Full publication list of reference [14] in the manuscript