Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

SI

Magnetic and magnetocaloric properties of an unusual family of carbonate-panelled $[Ln^{III}_6Zn^{II}_2]$ cages

Waqas Sethi, Sergio Sanz, Kasper S. Pedersen, Mikkel A. Sørensen, Gary S. Nichol, Giulia Lorusso, Marco Evangelisti, Euan K. Brechin and Stergios Piligkos

Table S1. Crystallographic details for complexes 1-5.

	1	2	3	4	5
	(Gd_6Zn_2)	(Dy_6Zn_2)	(Sm_6Zn_2)	(Eu_6Zn_2)	(Tb_6Zn_2)
M, g mol ⁻¹	4374.15	4462.38	4549.75	4403.20	4359.87
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P -1	P -1	P -1	P -1	P -1
<i>a</i> / Å	20.6864(3)	20.6705(3)	20.7294(4)	20.7014(4)	22.1510(3)
<i>b</i> / Å	22.1669(4)	21.9660(4)	22.2218(4)	22.2355(5)	29.0764(3)
c/ Å	25.2175(4)	25.1531(3)	25.3356(4)	25.2949(5)	32.1304(3)
α (°)	71.9252(14)	71.9837(14)	71.8490(9)	71.8158(18)	75.8497(8)
β (°)	88.2848(12)	88.2024(10)	88.2919(9)	88.3250(15)	88.0840(9)
y (°)	63.8427(17)	64.4382(15)	63.4640(9)	63.667(2)	79.2672(10)
V/ Å3	9789.5(3)	9728.1(3)	9839.2(3)	9832.1(4)	19713.8(4)
<i>T</i> / K	120	120	120	120	120
Ζ	2	2	2	2	4
$D_{\rm x}/{\rm Mg}{\rm m}^{-3}$	1.484	1.525	1.536	1.487	1.469
Crystal shape and colour	Pale yellow rods	Colourless rods	Pale yellow blocks	Yellow rods	Pale yellow blocks
Crystal size/ mm	0.578 x 0.3932 x 0.1282	0.4576 x 0.274 x 0.0328	0.335 x 0.219 x 0.144	0.5853 x 0.268 x 0.1082	0.44 x 0.22 x 0.07
μ / mm ⁻¹	2.32	2.61	2.09	2.211	11.33
unique data	57700	44027	45021	57696	81683
unique data, $(I > 2\sigma(I))$	44403	30393	30965	44399	51679
R_1 , ^a wR_2 ^b	0.051, 0.124	0.057, 0.145	0.039, 0.103	0.0514, 0.1128	0.057, 0.173
Goodness of fit	1.09	1.05	1.02	1.092	1.03

 ${}^{a}R_{1} = \sum \left\|F_{o}\right| - \left|F_{c}\right| / \sum \left|F_{o}\right| \text{ for all observations. } {}^{b}wR_{2} = \left[\sum w\left(F_{o}^{2} - F_{c}^{2}\right)^{2} / \sum w\left(F_{o}^{2}\right)^{2}\right]^{1/2} \text{ for all data.}$

Figure S1. IR data of compounds 1, 3, 4 and 5.

Figure S2. Intramolecular H-bonding in the cation of **1** represented by the dashed light-blue lines (left). H-bonded dimers of the cations of **1** *via* the diethanolamine units bonded to Zn2 (right).

Figure S3. The packing of the cations of 1 in the crystal. A) Serpentine-like H-bonded chain of the cations of 1. B) 2D sheets of the cations in 1. C) The layered structure of the cations in 1 in the extended structure.

Bond lengths (consituents of the metal ion core)									
	1	2	3	4	5				
$Ln(1)\cdots Ln(2)$	5.0206(7)	5.0206(7)	5.0602(7)	5.0360(7)	4.9932(9)				
$Ln(1)\cdots Ln(3)$	4.6393(6)	4.6393(6)	4.6827(6)	4.6432(6)	4.6236(8)				
$Ln(1)\cdots Ln(5)$	5.2925(5)	5.2925(5)	5.2763(5)	5.2865(5)	5.2817(8)				
Ln(1)…Ln(6)	3.8858(7)	3.8858(7)	3.9167(7)	3.8967(7)	3.8728(7)				
$Ln(2)\cdots Ln(3)$	5.0430(7)	5.0430(7)	5.0780(7)	5.0506(7)	5.0492(7)				
$Ln(2)\cdots Ln(4)$	4.9842(5)	4.9842(5)	5.0069(4)	4.9762(5)	4.9569(8)				
$Ln(2)\cdots Ln(6)$	6.3462(6)	6.3462(6)	6.3955(6)	6.3611(6)	6.314(1)				
$Ln(3)\cdots Ln(4)$	5.0327(7)	5.0327(7)	5.0740(7)	5.0486(7)	5.0160(7)				
$Ln(3)\cdots Ln(5)$	5.7941(6)	5.7941(6)	5.8117(6)	5.8070(6)	5.7785(8)				
$Ln(4)\cdots Ln(5)$	4.8057(7)	4.8057(7)	4.8309(7)	4.8195(7)	4.799(1)				
$Ln(5)\cdots Ln(6)$	4.0720(6)	4.0720(6)	4.1061(6)	4.0674(6)	4.0550(7)				
$Ln(2)\cdots Zn(1)$	4.3627(8)	4.345(1)	3.3902(8)	4.3728(8)	4.365(1)				
$Ln(4)\cdots Zn(1)$	4.3143(8)	4.297(1)	4.3351(8)	4.3143(8)	4.3130(9)				
$Ln(6)\cdots Zn(1)$	3.7692(7)	3.7444(9)	3.7930(7)	3.7811(7)	3.758(1)				
$Ln(6)\cdots Zn(2)$	3.7624(7)	3.7519(9)	3.7808(7)	3.7729(7)	3.774(1)				
Bond angles (constituents of the metal ion core)									
	1	2	3	4	5				
$Ln(1)-(\mu_2-O)-Ln(2)$	170.5(2)	153.8(2)	170.0(1)	170.6(2)	170.4(2)				
$Ln(1)-(\mu_2-O)-Ln(3)$	152.3(2)	150.1(2)	153.9(2)	152.4(2)	152.1(2)				
$Ln(1)-(\mu_2-O)-Ln(6)$	111.6(1)	111.1(2)	111.3(1)	111.6(1)	112.0(2)				
Ln(1)-(µ ₂ -O)-Ln(6)'	109.3(1)	112.5(2)	108.6(1)	109.3(1)	109.2(2)				
$Ln(2)-(\mu_2-O)-Ln(3)$	161.0(2)	163.9(2)	160.8(1)	161.0(2)	160.7(2)				
$Ln(2)-(\mu_2-O)-Ln(4)$	164.2(2)	164.3(2)	163.9(1)	164.2(2)	164.9(2)				
$Ln(2)-(\mu_2-O)-Zn(1)$	139.9(2)	143.1(2)	139.9(2)	139.9(2)	140.7(2)				
$Ln(3)-(\mu_2-O)-Ln(4)$	163.7(2)	160.8(2)	163.1(1)	163.7(2)	163.7(2)				
$Ln(4)-(\mu_2-O)-Ln(5)$	153.3(2)	171.4(2)	153.1(1)	153.5(2)	153.9(2)				
$Ln(4)-(\mu_2-O)-Zn(1)$	142.6(2)	140.1(3)	142.3(2)	142.6(2)	143.4(2)				
$Ln(5)-(\mu_2-O)-Ln(6)$	111.7(1)	112.4(2)	111.4(1)	111.3(1)	111.0(2)				
$Ln(5)-(\mu_2-O)-Ln(6)$	111.5(1)	109.8(2)	111.1(1)	111.5(1)	111.5(2)				
$Ln(6)-(\mu_2-O)-Zn(1)$	118.2(2)	118.2(2)	118.3(2)	118.3(2)	117.8(2)				
$Ln(6)-(\mu_2-O)-Zn(2)$	120.5(2)	121.5(2)	120.3(2)	120.5(2)	121.5(2)				

 Table S2 Selected bond lengths (Å) and angles (°) for compounds 1-5.

Figure S4. *M* vs. *H*/*T* data and best-fits for **1**. The fitted parameter is $g_{Gd} = 2$.

Figure S5. *M* vs. *H*/*T* data for **2**.

Figure S6. *M* vs. *H*/*T* data for **3**.

Figure S7. M vs. H/T data for 4.

Figure S8. *M* vs. *H*/*T* data for **5**.

Figure S9. Entropy of 1 vs. T for the labelled applied magnetic fields, as obtained from the heat capacity data in Fig. 4.