Supporting Information

Novel Helical Assembly of a Pt(II) Phenylbipyridine Complex Directed by Metal–Metal Interaction and Aggregation-Induced Circularly Polarized Emission

Toshiaki Ikeda,a Midori Takaya,a Jatish Kumar,b Tsuyoshi Kawai,b and Takeharu Haino*a

aDepartment of Chemistry, Graduate School of Science, Hiroshima University
Higashi-Hiroshima 739-8526 (Japan)
bGraduate School of Materials Science, Nara Institute of Science and Technology
Nara 630-0192 (Japan)

Table of Contents

General Information \hspace{1cm} S3
Analysis of self-association by 1H NMR experiments \hspace{1cm} S3
Determination of the CD dissymmetry factor g_{abs} and the CPL dissymmetry factor g_{lum} \hspace{1cm} S4

\textbf{Figure S1.} (a) COSY and (b) NOESY spectra of S-1 at 298 K in chloroform-d_1. \hspace{1cm} S5

\textbf{Figure S2.} Non-linear curve fitting of S-1 using 1H NMR in chloroform-d_1 at 298 K. \hspace{1cm} S6

\textbf{Table S1.} Aggregation-induced shifts of S-1 in chloroform-d_1 at 298 K. \hspace{1cm} S6

\textbf{Figure S3.} Energy minimized structure at B3LYP/LanL2DZ [Pt] + 6-31G(d) [C,H,N,O] level of Pt(II)phenylbipyridine complex possessing bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand. \hspace{1cm} S7

\textbf{Figure S4.} (a) Energy diagram of Pt(II)phenylbipyridine complex possessing bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand calculated by TD-DFT at B3LYP/LanL2DZ [Pt] + 6-31G(d) [C,H,N,O] level. (b) Calculated UV/vis absorption spectrum. \hspace{1cm} S8

\textbf{Figure S5.} Excitation spectra of S-1 in chloroform at 25 ºC. \hspace{1cm} S9

\textbf{Figure S6.} CD spectra of S-1 in chloroform at 25 ºC. \hspace{1cm} S9
Figure S7. (a) UV/vis absorption and CD, and (b) emission spectra of S-1 (0.50 mmol L⁻¹) in toluene at 50 °C.

Figure S8. Dynamic light scattering (DLS) profile showing the intensity-averaged hydrodynamic radius of S-1 in toluene at 25 °C.

Figure S9. UV/vis absorption and CD spectra of S-1 (0.50 mmol L⁻¹) in toluene at 25 °C before heating.

Figure S10. (a) Time-dependent emission spectra of S-1 (0.50 mmol L⁻¹) in toluene at 25 °C before heating. (b) The plot of emission intensity at 820 nm vs t.

Figure S11. Photographs of (left) toluene solution and (right) chloroform solution of S-1 under irradiation of (top) room light and (bottom) UV (365 nm) light.

Figure S12. Photographs of solids of S-1 obtained by evaporation of (left) toluene solution and (right) chloroform solution under irradiation of (top) room light and (bottom) UV (365 nm) light.

Figure S13. ¹H NMR spectra of (a) solid A and (b) solid B dissolved in chloroform-d.

Figure S14. (a) AFM image of S-1 on mica. (b) Height profile on the white line of (a).

Figure S15. (a) AFM image of S-1 on HOPG. (b) Height profile on the white line of (a).

References

¹H and ¹³C NMR spectra of newly synthesized compounds

Calculated Structure of Pt(II)phenylbipyridine complex possessing bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand
General Information: All reagents and solvents were of the commercial reagent grade and were used without further purification except where noted. Dry CH$_2$Cl$_2$, DMF, and triethylamine were obtained by distillation over CaH$_2$. 1H and 13C NMR spectra were recorded on a Varian mercury-300 spectrometer and JEOL JNM-ECA600 spectrometer at 25 °C in CDCl$_3$ and chemical shifts were reported as the delta scale in ppm relative to CHCl$_3$ ($\delta = 7.260$ for 1H and 77.3 for 13C). UV/vis absorption spectra were recorded on a JASCO V-560 spectrophotometer. Fluorescence spectra were recorded on a JASCO FP-6500 spectrofluorometer. Fluorescence quantum yields were recorded on a JASCO FP-6500 spectrofluorometer with an integrating sphere (JASCO, ILF-533, diameter 10 cm). CD spectra were recorded on a JASCO J-720W spectropolarimeter. IR spectra were recorded on JASCO FT/IR-420S spectrometer. ESI-Mass spectra were recorded on Thermo Scientific LTQ Orbitrap XL hybrid FTMS. Optical rotations were recorded on a JASCO DIP-370 polarimeter. UV/vis absorption, fluorescence, and CD spectra were measured using a conventional quartz cell (light path 1 cm) with temperature control. Elemental analyses were performed using CHN analyzer. Preparative separations were performed by silica gel gravity column chromatography (Silica Gel 60N (spherical, neutral)). Recycling preparative GPC-HPLC separations were carried out on JAI LC-908s using preparative JAIGEL-2H, 2H, 1H columns in series. Compounds 2, S- and R-3, and 5 were prepared according to the reported methods.

Analysis of self-association by 1H NMR experiments: Hyperbolic curves were obtained by plotting of compound concentrations vs 1H NMR chemical shifts (δ) of the aromatic protons. The curve-fitting analysis of the plots was carried out on the basis of an isodesmic association model, which is a type of unlimited self-association where the addition of each successive monomer to polymer involves an equal association constant ($K_2 = K_3 = \ldots = K_i = K_E$). The fitting functions are given by equation 1 for NMR experiments. δ denotes apparent chemical shifts obtained from spectra; δ_m and δ_s are chemical shifts for a monomer and self-assembled species, respectively. K_E is the association constant; and c is the total concentration of a compound. The complexation-induced shift $\Delta \delta$ displays the difference between δ_m and δ_s.

S3
\[
(c) = \alpha + (\beta - \alpha) \left(1 + \frac{1 - \sqrt{4K\varepsilon c + 1}}{2K\varepsilon c} \right)^{\frac{1}{2}}
\] \hspace{1cm} (1)

Determination of the CD dissymmetry factor \(g_{\text{abs}}\) **and the CPL dissymmetry factor** \(g_{\text{lum}}\):

The CD dissymmetry factors \(g_{\text{abs}}\) were defined as \(2\Delta\varepsilon/\varepsilon\) at the wavelength of the first Cotton effect (468 nm). \(\Delta\varepsilon\) and \(\varepsilon\) are the molar circular dichroism and the molar extinction coefficient, respectively.

The CPL dissymmetry factors \(g_{\text{lum}}\) were defined as \(2\Delta I/I\) at the wavelength of the strongest CPL (530 nm). \(\Delta I\) and \(I\) are the CPL and fluorescence intensities, respectively.
Figure S1. (a) COSY and (b) NOESY spectra of S-1 at 298 K in chloroform-d_1.
Figure S2. Non-linear curve fitting of S-1 using 1H NMR in chloroform-d_1 at 298 K. The solid curves were obtained by the fitting analysis.

Table S1. Aggregation-induced shifts of S-1 in chloroform-d_1 at 298 K.

<table>
<thead>
<tr>
<th></th>
<th>H_a</th>
<th>H_b</th>
<th>H_c</th>
<th>H_d</th>
<th>H_e</th>
<th>H_f</th>
<th>H_g</th>
<th>H_h</th>
<th>H_i</th>
<th>H_j</th>
<th>H_k</th>
<th>H_l</th>
<th>H_m</th>
<th>H_n</th>
<th>H_o</th>
<th>H_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \delta$</td>
<td>-0.57</td>
<td>-0.56</td>
<td>-0.37</td>
<td>-0.29</td>
<td>-0.28</td>
<td>-0.31</td>
<td>-0.66</td>
<td>-0.50</td>
<td>-0.25</td>
<td>-0.25</td>
<td>-0.63</td>
<td>-0.20</td>
<td>-0.20</td>
<td>-0.04</td>
<td>-0.09</td>
<td>-0.08</td>
</tr>
</tbody>
</table>
Figure S3. Energy minimized structure calculated by DFT method at B3LYP/LanL2DZ [Pt] + 6-31G(d) [C,H,N,O] level of Pt(II)phenylbipyridine complex possessing bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand. The chiral alkyl chains of S-1 are replaced by methyl groups.
Figure S4. (a) Energy diagram of Pt(II)phenylbipyridine complex possessing bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand calculated by TD-DFT at B3LYP/LanL2DZ [Pt] + 6-31+G(d,p) [C,H,N,O] level. (b) Calculated UV/vis absorption spectrum.
Figure S5. Excitation spectra of S-1 in chloroform at 25 °C. The concentration of the solution of S-1 are 0.49 (dotted line) and 5.17 (dashed and solid line) mmol L⁻¹. \(\lambda_{em} = 580 \) (dotted and dashed line) and 800 (solid line) nm.

Figure S6. CD spectra of S-1 in chloroform at 25 °C. The concentration of the solution of S-1 are 0.49 (dotted line) and 5.17 (solid line) mmol L⁻¹.
Figure S7. (a) UV/vis absorption (solid line) and CD (dotted line), and (b) emission spectra of S-1 (0.50 mmol L\(^{-1}\)) in toluene at 50 °C. \(\lambda_{\text{ex}} = 444\) nm.

Figure S8. Dynamic light scattering (DLS) profile showing the intensity-averaged hydrodynamic radius of S-1 in toluene at 25 °C.
Figure S9. UV/vis absorption (solid line) and CD (dotted line) spectra of S-1 (0.50 mmol L\(^{-1}\)) in toluene at 25 °C before heating.

Figure S10. (a) Time-dependent emission spectra of S-1 (0.50 mmol L\(^{-1}\)) in toluene at 25 °C before heating. (b) The plot of emission intensity at 820 nm vs t.
Figure S11. Photographs of (left) toluene solution and (right) chloroform solution of S-1 under irradiation of (top) room light and (bottom) UV (365 nm) light.

Figure S12. Photographs of solids of S-1 obtained by evaporation of (left) toluene solution and (right) chloroform solution under irradiation of (top) room light and (bottom) UV (365 nm) light.
Figure S13. 1H NMR spectra of (a) solid A and (b) solid B dissolved in chloroform-d. * indicates solvents and impurities.
Figure S14. (a) AFM image of S-1 on mica. The sample was prepared by spin-coating the toluene solution of S-1 after one heating-cooling cycle. (b) Height profile on the white line of (a).

Figure S15. (a) AFM image of S-1 on HOPG. The sample was prepared by spin-coating the toluene solution of S-1 after one heating-cooling cycle. (b) Height profile on the white line of (a).
References

5,5’-(5-ethynyl-1,3-phenylene)bis(3-((S)-3,7-dimethyloctyloxy)phenyl)isoxazole)
(S-4)
5,5’-(5-ethynyl-1,3-phenylene)bis(3-((R)-3,7-dimethyloctyloxy)phenyl)isoxazole)

(R-4)

R =

\[\text{(R-4)}\]
(6-phenyl-2,2'-bipyridine)(5,5’-(5-ethynyl-1,3-phenylene)bis(3-(4-((S)-3,7-dimethyloctyl oxy)phenyl)isoxazole))platinum (S-1)
(6-phenyl-2,2'-bipyridine){5,5'-(5-ethynyl-1,3-phenylene)bis(3-(4-((R)-3,7-dimethyloctyl oxy)phenyl)isoxazole)}platinum (R-1)
Calculated Structure of Pt(II)phenylbipyridine complex possessing
bis(p-methoxyphenylisoaxoly)phenylacetylene ligand

![Chemical structure diagram]

Standard orientation:

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-7.590993</td>
<td>-3.263973</td>
<td>-0.394969</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-6.248692</td>
<td>-2.870233</td>
<td>-0.372405</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
<td></td>
<td>-5.932564</td>
<td>-1.603348</td>
<td>0.003266</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-6.856367</td>
<td>-0.664609</td>
<td>0.370577</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-8.211839</td>
<td>-1.033458</td>
<td>0.356700</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-8.568571</td>
<td>-2.329431</td>
<td>-0.025836</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-6.250481</td>
<td>0.621382</td>
<td>0.734085</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-5.078827</td>
<td>-3.704376</td>
<td>-0.722988</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-4.816903</td>
<td>0.696890</td>
<td>0.650709</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-4.206961</td>
<td>1.911879</td>
<td>0.995870</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-4.969683</td>
<td>3.012700</td>
<td>1.406730</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-6.367482</td>
<td>2.927625</td>
<td>1.483021</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-7.005546</td>
<td>1.733334</td>
<td>1.147068</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-5.161479</td>
<td>-5.039996</td>
<td>-1.133162</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-3.993310</td>
<td>-5.742867</td>
<td>-1.440338</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-2.755971</td>
<td>-5.099192</td>
<td>-1.333579</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td></td>
<td>-2.723805</td>
<td>-3.766513</td>
<td>-0.921201</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>0</td>
<td></td>
<td>-3.852509</td>
<td>-3.087591</td>
<td>-0.623654</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>78</td>
<td>0</td>
<td>-3.996532</td>
<td>-1.030887</td>
<td>0.037236</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>-2.098299</td>
<td>-0.510837</td>
<td>0.058568</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.890681</td>
<td>-0.258320</td>
<td>0.049596</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>0.506749</td>
<td>0.016382</td>
<td>0.036059</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>0.987636</td>
<td>1.341738</td>
<td>-0.009921</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>2.365746</td>
<td>1.613462</td>
<td>-0.028913</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>3.285660</td>
<td>0.553425</td>
<td>0.000794</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.827615</td>
<td>-0.773538</td>
<td>0.049214</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.449031</td>
<td>-1.035263</td>
<td>0.065817</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>3.784734</td>
<td>-1.874733</td>
<td>0.080074</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>0</td>
<td>2.842654</td>
<td>2.991515</td>
<td>-0.083042</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>0</td>
<td>5.152068</td>
<td>-1.942914</td>
<td>0.131297</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>5.478155</td>
<td>-3.338488</td>
<td>0.141162</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>4.381066</td>
<td>-4.103562</td>
<td>0.097015</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8</td>
<td>0</td>
<td>3.275283</td>
<td>-3.163477</td>
<td>0.057588</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>2.222965</td>
<td>4.211597</td>
<td>-0.143643</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>3.272960</td>
<td>5.187117</td>
<td>-0.177113</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>0</td>
<td>4.481678</td>
<td>4.614742</td>
<td>-0.139529</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>4.214468</td>
<td>3.189138</td>
<td>-0.078284</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>0</td>
<td>6.808177</td>
<td>-3.958763</td>
<td>0.195074</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>3.153403</td>
<td>6.648909</td>
<td>-0.246108</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>7.979693</td>
<td>-3.175256</td>
<td>0.180450</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>9.237273</td>
<td>-3.766749</td>
<td>0.231866</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>9.351669</td>
<td>-5.163402</td>
<td>0.299179</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>8.198435</td>
<td>-5.961470</td>
<td>0.314448</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>6.941456</td>
<td>-5.356808</td>
<td>0.262801</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>0</td>
<td>1.898618</td>
<td>7.274565</td>
<td>-0.288844</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>6</td>
<td>0</td>
<td>1.782417</td>
<td>8.666907</td>
<td>-0.356283</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>6</td>
<td>0</td>
<td>2.940657</td>
<td>9.453514</td>
<td>-0.381799</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>4.205906</td>
<td>8.843460</td>
<td>-0.339474</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>0</td>
<td>4.309171</td>
<td>7.461146</td>
<td>-0.272508</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0</td>
<td>10.648497</td>
<td>-5.657845</td>
<td>0.346706</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>8</td>
<td>0</td>
<td>2.946093</td>
<td>10.840445</td>
<td>-0.448023</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>0</td>
<td>10.849978</td>
<td>-7.094316</td>
<td>0.414070</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>6</td>
<td>0</td>
<td>1.677724</td>
<td>11.545686</td>
<td>-0.491402</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>0</td>
<td>-7.875170</td>
<td>-4.265874</td>
<td>-0.689745</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0</td>
<td>-8.973223</td>
<td>-0.318345</td>
<td>0.640762</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>0</td>
<td>-9.614126</td>
<td>-2.616852</td>
<td>-0.037351</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0</td>
<td>-3.127410</td>
<td>1.989811</td>
<td>0.942377</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>0</td>
<td>-4.473132</td>
<td>3.942319</td>
<td>1.670544</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>0</td>
<td>-6.951671</td>
<td>3.784533</td>
<td>1.802436</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>0</td>
<td>-8.088719</td>
<td>1.671511</td>
<td>1.208566</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>0</td>
<td>-6.125801</td>
<td>-5.526548</td>
<td>-1.211079</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>0</td>
<td>-4.049854</td>
<td>-6.777976</td>
<td>-1.757805</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>0</td>
<td>-1.831414</td>
<td>-5.614697</td>
<td>-1.562883</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
<td>-1.802792</td>
<td>-3.207159</td>
<td>-0.816331</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>0</td>
<td>0.268624</td>
<td>2.152374</td>
<td>-0.031795</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>1</td>
<td>0</td>
<td>4.345171</td>
<td>0.775115</td>
<td>-0.018604</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>0</td>
<td>1.100486</td>
<td>-2.059268</td>
<td>0.106092</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>0</td>
<td>5.840201</td>
<td>-1.116218</td>
<td>0.167521</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1</td>
<td>0</td>
<td>1.163441</td>
<td>4.398903</td>
<td>-0.164819</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>0</td>
<td>7.911043</td>
<td>-2.094346</td>
<td>0.125633</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>0</td>
<td>10.142771</td>
<td>-3.172009</td>
<td>0.220461</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>0</td>
<td>8.265704</td>
<td>-7.041077</td>
<td>0.366901</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1</td>
<td>0</td>
<td>6.047404</td>
<td>-5.969509</td>
<td>0.275962</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1</td>
<td>0</td>
<td>0.992379</td>
<td>6.678688</td>
<td>-0.270396</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>0</td>
<td>0.797866</td>
<td>9.116557</td>
<td>-0.388312</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1</td>
<td>0</td>
<td>5.085638</td>
<td>9.475615</td>
<td>-0.360371</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>0</td>
<td>5.283945</td>
<td>6.988820</td>
<td>-0.239982</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>1</td>
<td>0</td>
<td>11.930574</td>
<td>-7.228976</td>
<td>0.439478</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>1</td>
<td>0</td>
<td>10.434851</td>
<td>-7.595544</td>
<td>-0.468136</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>0</td>
<td>10.402859</td>
<td>-7.516503</td>
<td>1.321633</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>1</td>
<td>0</td>
<td>1.940585</td>
<td>12.601638</td>
<td>-0.539323</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>0</td>
<td>1.084538</td>
<td>11.352269</td>
<td>0.410125</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>1</td>
<td>0</td>
<td>1.098320</td>
<td>11.267758</td>
<td>-1.379735</td>
<td></td>
</tr>
</tbody>
</table>
