Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: Efficient host for ADP/ATP in phosphate buffer

Amit Kumar†, Rampal Pandey†, Ashish Kumar†, Rakesh Kumar Gupta†, Mrigendra Dubey†, Akbar Mohammed‡, Shaikh M. Mobin‡, and Daya Shankar Pandey†*

†Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi - 221 005, India
‡Discipline of Chemistry, Indian Institute of Technology, Indore - 452 017, India

Supporting Information Placeholder

Contents:
1. Fig. S1-S2 ¹H and ¹³C NMR spectra of H₂L¹ and H₂L²
2. Fig. S3-S5 ESI-Mass spectra of H₂L¹, H₂L², 1 and 2
3. Fig. S6 Intramolecular hydrogen bonding interactions in H₂L²
4. Fig. S7 Structure showing distances to Cu(II) from centroid in 1
5. Fig. S8-S9 UV/vis spectra of 1 and 2 in presence of various NPPs and anions
6. Fig. S10 UV/vis spectra of 1 and 2 showing changes in d-d bands with ADP/ATP
7. Fig. S11 Association constant by Benesi-Hildebrand for 1 with ADP/ATP
8. Fig. S12 Association constant by Benesi-Hildebrand for 2 with ADP/ATP
9. Fig. S13-S14 Job’s plot for 1/2 with ADP/ATP
10. Fig. S15 UV/vis spectra of H₂L¹ and H₂L² with ADP/ATP
11. Fig. S16-S17 ¹H and ³¹P NMR spectra of ATP in presence of 2
12. Fig. S18-S19 ESI-MS of 1+ADP and 1+ATP
13. Fig. S20-S21 ESI-MS of 2+ADP and 2+ATP
14. Fig. S22 UV/vis spectra of a fresh and 10 days old solution of 1 and 2
15. Fig. S23-S25 Cyclic voltammograms of 1 and 2 with ADP/ATP
16. Fig. S26-S28 Molecular docked structures for adducts 1 and 2 with ATP/ADP
17. Table S1 UV/vis data for H₂L¹, H₂L², 1 and 2
18. Table S2 Cyclic voltammetric data of H₂L¹, H₂L², 1 and 2
19. Table S3 Cyclic voltammetric data of 1 and 2 with ATP and ADP
Fig. S1 1H (above) and 13C (below) NMR spectra of H_2L^1.
Fig. S2 \(^1\)H (above) and \(^{13}\)C (below) NMR spectra of H\(_2\)L\(_2\).
Fig. S3 ESI-Mass spectra of H_2L^1 (above) of H_2L^2 (below).
Fig. S4 ESI-Mass spectrum of 1. Simulated isotopic pattern for the molecular ion peak at m/z 1613.3768 [M+Na]⁺ (red circle, inset) and 1591.3943 [M+H]⁺ (blue circle, below).
Fig. S5 ESI-Mass spectrum of 2. Simulated isotopic pattern for the molecular ion peak at m/z 1792.4596 \([\text{M+H}]^+\) (red circle, inset) and 1814.4493 \([\text{M+Na}]^+\) (blue circle, below).
Fig. S6 Intra-molecular hydrogen bonding interactions in H_2L^2.

Fig. S7 Crystal structure of 1 showing distances from centroid of cavity to Cu(II) centre.

Fig. S8 UV/vis spectra of 1 in presence of various NPPs [ATP, ADP, AMP, GTP, GDP, CTP, UTP and UDP (a)] and anions [F^-, Cl^-, Br^-, Γ^-, SO_4^{2-}, S^2-, HSO_3^-, SO_3^{2-}, $\text{S}_2\text{O}_3^{2-}$, $\text{S}_2\text{O}_8^{2-}$, CO_3^{2-}, NO_2^-, NO_3^-, H_2PO_4^-, HPO_4^{2-}, PO_4^{3-}, $\text{P}_2\text{O}_7^{4+}$ (b)].
Fig. S9 UV/vis spectra of 2 in presence of various NPPs [ATP, ADP, AMP, GTP, GDP, CTP, UTP and UDP (a)] and anions [F⁻, Cl⁻, Br⁻, I⁻, SO₄²⁻, S²⁻, HSO₃⁻, SO₃²⁻, S₂O₇²⁻, S₂O₅²⁻, CO₃²⁻, NO₂⁻, NO₃⁻, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻, P₂O₇⁴⁻] (b).

Fig. S10 UV/vis spectra of 1 and 2 (c, 1 × 10⁻³ M, DMSO/PBS, v/v, 1:99) showing d-d transition band in absence (black line) and presence (red line) of ADP/ATP (5.0 equiv).
Fig. S11 Estimation of association constant by Benesi-Hildebrand (B-H) plot for 1:1 stoichiometry for complexes between 1 + ADP (a) and 1 + ATP (b).

Fig. S12 Estimation of association constant by Benesi-Hildebrand (B-H) plot for 1:1 stoichiometry for complexes between 2 + ADP (a) and 2 + ATP (b).

Fig. S13 Job’s plot analysis illustrating 1:1 stoichiometry for 1 with ADP (a) and ATP (b) from UV/vis spectra.
Fig. S14 Job’s plot analysis illustrating 1:1 stoichiometry for 2 with ADP (a) and ATP (b) from UV/vis spectra.

Fig. S15 UV/vis spectra of H_2L^1 (a) and H_2L^2 (b), showing insignificant changes in presence of ADP/ATP.
Fig. S16 1H NMR titration spectra for ATP (D$_2$O) with varying amount of 2 (blue dotted lines show downfield shifting in H_8 and H_2 adenine protons).

Fig. S17 31P NMR titration spectra of ATP (D$_2$O) with varying amount of 2 (blue dotted lines show upfield shifting in 31P signals).
Fig. S18 ESI-MS of 1 + ADP [Inset shows simulated isotopic pattern for molecular ion peak at m/z 2019.7877 \{1 + (ADP)^2^- + 3H]^+\].

Fig. S19 ESI-MS of 1+ATP [Inset shows simulated isotopic pattern for molecular ion peak at m/z 2099.2877 \{1 + (ATP)^2^- + 3H]^+\].
Fig. S20 ESI-MS of 2 + ADP [Inset showing simulated isotopic pattern for molecular ion peak at \(m/z \) 2219.7501 \(\{2^+ \text{ (ADP)}^2^- + 3\text{H}\}^+ \).]

Fig. S21 ESI-MS of 2 + ATP [Inset showing simulated isotopic pattern for molecular ion peak at \(m/z \) 2299.5135 \(\{2^+ \text{ (ATP)}^2^- + 3\text{H}\}^+ \).]
Fig. S22 UV/vis spectra for a fresh (black line) and 10 days old solution (red line) for 1 (a) and 2 (b) (c, 10 μM, DMSO/PBS; v/v, 1:99).

Fig. S23 Cyclic voltammetric titration plots for 1 with increasing amount of ATP (0.0–12.0 equiv) in full window (a) and only in reduction window (b).
Fig. S24 Cyclic voltammetric titration plots for 2 with increasing amount of ADP (0.0–15.0 equiv) in full window (a) and only in reduction window (b).

Fig. S25 Cyclic voltammetric titration plots for 2 with increasing amount of ATP (0.0–7.0 equiv) in full window (a) and only in reduction window (b).
Fig. S26 Molecular docked structures for 1 + ADP, show π–π interactions between adenine and salen core (a) and insertion of phosphate chain into the cavity shown by blue circle in (a) and space fill model in (b).

Fig. S27 Molecular docked structures for 1 + ATP, show π–π interactions between adenine and salen core (a) and insertion of phosphate chain into the cavity shown by blue circle in (a) and space fill model (b).
Fig. S28 Molecular docked structures for 2 + ADP, show π–π interactions between adenine and salen core (a) and insertion of phosphate chain into the cavity shown by blue circle in (a) and space fill model (b).
Table S1. UV/vis data of \(\text{H}_2\text{L}^1, \text{H}_2\text{L}^2, \text{1} \) and \(\text{2} \).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(\text{H}_2\text{L}^1)</th>
<th>(\text{H}_2\text{L}^2)</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\varepsilon), (4.57 \times 10^4) and 262 nm (\varepsilon), (4.41 \times 10^4)</td>
<td>(\varepsilon), (2.26 \times 10^4) and 312 nm (\varepsilon), (4.94 \times 10^4)</td>
<td>(\varepsilon), (2.69 \times 10^4) and 323 nm (\varepsilon), (4.21 \times 10^4)</td>
<td>(\varepsilon), (2.14 \times 10^4) and 319 nm (\varepsilon), (3.94 \times 10^4)</td>
</tr>
</tbody>
</table>

Table S2 Cyclic voltammetric data of \(\text{H}_2\text{L}^1, \text{H}_2\text{L}^2, \text{1} \) and \(\text{2} \).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Oxidation Potential; V (Current Density; (\mu \text{A}))</th>
<th>Reduction Potential; V (Current Density; (\mu \text{A}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{L}^1)</td>
<td>0.403 (I = -4.86)</td>
<td>---</td>
</tr>
<tr>
<td>(\text{H}_2\text{L}^2)</td>
<td>0.382 (I = -4.50)</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0.564 (I = -4.15)</td>
<td>-0.306V (I = 1.671)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.719V (I = 1.620)</td>
</tr>
<tr>
<td>2</td>
<td>0.554 (I = -3.66)</td>
<td>-0.314V (I = 1.509)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.717V (I = 1.465)</td>
</tr>
</tbody>
</table>

Table S3 Cyclic voltammetric data of \(\text{1} \) and \(\text{2} \) upon addition of ATP and ADP.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Probe + ATP</th>
<th>Probe + ADP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction Potential; V (Current Density; (\mu \text{A}))</td>
<td>Reduction Potential; V (Current Density; (\mu \text{A}))</td>
<td>Reduction Potential; V (Current Density; (\mu \text{A}))</td>
</tr>
<tr>
<td>(\text{1})</td>
<td>-0.306V (I = 1.671)</td>
<td>-0.321 (I = 1.892)</td>
</tr>
<tr>
<td></td>
<td>-0.719V (I = 1.620)</td>
<td>-0.719 (I = 1.985)</td>
</tr>
<tr>
<td>(\text{2})</td>
<td>-0.314V (I = 1.509)</td>
<td>-0.325 (I = 1.678)</td>
</tr>
<tr>
<td></td>
<td>-0.717V (I = 1.465)</td>
<td>-0.717 (I = 1.746)</td>
</tr>
</tbody>
</table>